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Abstract

Cubical Type Theory [11] provides a computational meaning to Vo-
evodsky’s univalence axiom. It uses an abstract interval to characterize
equality types. Our goal here is to report on our progress trying to build
a variant of this theory in which an equality between types is by defini-
tion an equivalence. Our approach is to use equality types computed by
induction on types, inspired by parametricity.
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1 Introduction

This report is concerned with equalities in constructive mathematics, in the
context of type theory. We give a brief and partial overview of this subject.
The reader is assumed familiar with at least one type theory and with sequent
calculus.
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1.1 Intensional Type Theory

Type theories in the sense of Martin-Löf [19, 20, 21] are foundational systems
for constructive mathematics. They are based on the Curry-Howard isomor-
phism, an informal principle stating that we can interpret proofs as programs
and propositions as types (in the sense of computer science). Most current proof
assistants are based on some type theory (e.g. Coq, Agda, Lean), and illustrate
in practice the strong similarity between mathematical proofs and certified pro-
grams.

In a type theory there are types and inhabitants of these types. If we try to
interpret this in the usual set-theoretic framework, types correspond to sets or
propositions, and their inhabitants correspond to elements of the sets or proofs
of the propositions. We write a :A to say that a is an inhabitant of a type A. It
should be noted that, as expected from the Curry-Howard isomorphism, inhab-
itants of a type can be seen as programs, meaning there are rules to compute
with them. We expect these rules to obey some properties, for example if n : N
is a natural number (not depending on variables) we expect n to compute to
a numeral (i.e. an actual natural number like 2 or 7). This property is called
canonicity.

Recall that our main goal is to study equalities, in this context this means to
study a family of types a =A a

′ for any type A and a, a′ :A, such that inhabitants
of a =A a′ are witnesses that a and a′ behave exactly the same. These types
are called identity types or equality types.

Now we describe a minimal type theory which we call Intensional Type
Theory. It has three kinds of types:

• Dependent function types:

(x :A)→ B

with A a type and B a type (possibly depending on x). Intuitively an
inhabitant of (x : A) → B is a function taking a : A and giving back an
inhabitant of B[x/a] (this is a notation for the type B where x is replaced
by a). So for example if B does not depend on x, then we are dealing with
the type of functions from A to B (denoted A→ B to emphasize that B
does not depend on x).

Dependent function types are also called Π-types and denoted Π(x :A).B.

• Inductive types, i.e. the smallest types having a given list of constructors.
For example the smallest type A having constructors s :A→ A and 0 :A
is the type of natural numbers, denoted N. An extensive definition for
inductive types can be found in [13].

The so-called Σ-types are important examples of inductive types, denoted:

Σ(x :A).B

with A a type and B a type (possibly depending on x). An inhabitant of
such a type is a pair (a, b) with a : A and b : B[x/a]. We denote the first
(resp. second) component of c : Σ(x :A).B by c.1 :A (resp. c.2 :B[x/c.1]).
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• A hierarchy of universes (Un)n∈N. Universes are inhabited by types, and
they are assumed closed under dependent function types and inductive
types. They allow us to quantify over types, for example an inhabitant of:

(X : Un)→ X → X

is a family of functions from A to A for any type A : Un. A term taking
a type as input will be called polymorphic, a good example being the
polymorphic identity function:

λ(X : Un). λ(x :X). x

We include a whole hierarchy of universes because we want any universe
U to be itself the inhabitant of some universe, and U : U is inconsistent.
So the most natural solution is to use a denumerable family of universes,
and to say that U0 :U1, and more generally that Un :Un+1. We will often
omit the superscript in Un and simply write U .

An important observation is that Intensional Type Theory is sufficient to
formalize almost all of mathematics, although not always conveniently.

Now let’s go back to equalities. In Intensional Type Theory identity types in
U are defined as an inductive family of types, by stating that it is the smallest
family:

= : (X : U)→ X → X → U
(we denote ( = )(A, a, b) by a =A b in order to stay close with the usual
notations) with a constructor:

refl : (X : U)→ (x :X)→ x =X x

So it should be intuitively clear that if we have an inhabitant of a =A b, then a
and b behave the same, i.e. P [x/a] implies P [x/b] for any property P depending
on x.

An obvious advantage of this definition is that our system is minimal: iden-
tity types are simply examples of inductive types. It has two main drawbacks:

• Identity types can be iterated, for example if we have p, q :a =A b, then we
can define the type p =a=Ab q. These iterated identity types have a subtle
structure, which is inconvenient when using Intensional Type Theory in
practice.

• It is not clear how to interpret the identity types A =U B, and it is hard
to build inhabitants in them.

A straightforward solution to the first problem is to add an axiom stating that
all iterated identity types are inhabited. While such a type theory is easier to
use in practice, it still has some drawbacks, for example quotient types are not
definable. Next section present the univalent foundations of mathematics, which
give an interpretation to the subtle structure encountered in the first problem,
and a solution to the second problem.
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1.2 Univalent foundations and Homotopy Type Theory

The motivating idea for univalent foundations is an analogy between type theory
and topology:

Objects in type theory Topological interpretation
Types A : U Spaces

Inhabitants a :A Points in A
Identity types a =A b Spaces of paths from a to b in A

This gives a meaningful intuition about the subtle structure of iterated iden-
tity types. Note that this analogy can not be made formal directly, for at least
two reasons:

1. Points linked by a path are considered equal, but this is clearly not true
with the usual topological spaces.

2. Universes are themselves types, whereas it is unclear how universes of
spaces can be seen as spaces.

In fact a type should be interpreted as an homotopy type, intuitively a space
up to continuous deformation.

The notion of homotopy type has been studied for a long time in algebraic
topology. It is well-known that a lot of different objects can be used to model
homotopy types, although we will not present this menagerie here. An impor-
tant result is that a universe of homotopy types can be seen as an homotopy
type itself by using this menagerie. So univalent foundations can be summarized
as follows:

Objects in type theory Homotopical interpretation
Types A : U Homotopy types

Inhabitants a :A Points in A
Identity types a =A b Homotopy types of paths from a to b in A

Universes U Universes of homotopy types

We give two key results which give some serious ground to univalent foun-
dations:

• A type together with its iterated identity types has a structure of homo-
topy type [28].

• Type theory as a whole (including a hierarchy of universes) can be inter-
preted in a hierarchy of universes of homotopy types [15]. We will call this
the simplicial interpretation.

For A and B types, we denote by A ' B the type of equivalences between
A and B, i.e. functions from A to B which have both a right and left inverses.
Then we have a canonical map from A =U B to A ' B. The univalence axiom
states that this map is an equivalence, so it can be approximately written as:

(A =U B) ' (A ' B)

The simplicial interpretation validates this axiom.
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Remark 1. The reader familiar with higher category theory (see e.g. [18]) will
be interested to know that type theory with a univalent universe is in some sense
an internal langage for higher topoi [23].

The simplicial interpretation also validates the existence of some higher in-
ductive types. These are variant of inductive types which are generated by
some inhabitants (as for usual inductive types) together with some inhabitants
of their iterated identity types. It should be noted that a general definition
of higher inductive types is still lacking, although a lot of examples are known
and understood. Higher inductive types can be used to model for example quo-
tient types, or some spaces like the spheres, the tori and more generally finite
CW-complexes.

We call Homotopy Type Theory the theory consisting of Intensional Type
Theory together with the univalence axiom and higher inductive types. A
lengthy and accessible introduction to this theory can be found in [27]. Some
subtle and important geometric facts can be stated and proved within Homotopy
Type Theory, for example some homotopy groups of spheres can be computed
[9, 16, 17].

So univalent foundations give a new interpretation to identity types and can
be implemented straightforwardly using Homotopy Type Theory. Unfortunately
this theory has an axiom, so it computes poorly. For example a natural number
defined using univalence rarely computes to a numeral. It is desirable to define
a type theory which obeys univalence and computes well.

1.3 Cubical type theory

Cubical sets are combinatorial objects representing homotopy types. A model
for type theory in cubical sets is given in [7]. This model satisfies univalence [8],
but it does not support higher inductive types. Nevertheless it paved the way
for the first computational interpretation of univalence [11], using the so-called
Cubical Type Theory.

This theory uses dimension names denoted i, j, and so on, which are intu-
itively elements of an abstract interval with two endpoints 0 and 1 (think of the
topological interval [0, 1]). Then if A is a type and a is an inhabitant (possibly
depending on i) of A, we have by definition a term λi.a of type a[i/0] =A a[i/1].
Similarly if p:a =A b, then we have a term p(j):A, with the obvious computation
rule:

(λi.a)(j) ≡ a[i/j]

This allows to prove function extentionality:(
Π(x :A). f(x) =B g(x)

)
−→ f =A→B g

straightforwardly with the term:

λ
(
H : Π(x :A). f(x) =B g(x)

)
.λi.λ(x :A).H(x, i)
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More generally this guarantees that identity types in Σ and Π-types behave as
expected.

Cubical Type Theory also postulates Kan compositions, a natural higher
dimensional generalization of the concatenation of paths. Kan compositions
compute by induction on the type in which we compose. It also postulates a
somewhat complicated gluing constructor, which guarantees univalence.

This theory has a presheaf model, and therefore is consistent. It also enjoys
canonicity [14] (i.e. a natural number in a context with only dimension names is
a numeral). It is believed that it enjoys normalization and decidability of type
checking, although to my knowledge proofs of these facts are still lacking.

Note that identity types in Cubical Type Theory compute quite differently
from the usual ones. They are often called path types and denoted PathA(x, y)
in order to emphasize this difference (especially in type theories where path types
cohabit with more traditionally behaved identity types). We will nevertheless
use identity types to refer to both path types and identity types as an inductive
family.

Cubical Type Theory also supports some higher inductive types, as explained
in [12].

1.4 Parametricity

Our goal in this report is to sketch a variant of Cubical Type Theory. This
section introduces an idea called parametricity, which is essential in the design
of our theory.

Parametricity was first introduced by Reynolds [22]. It comes from the intu-
ition that polymorphic terms in type theory treat their type inputs uniformly.
This is formalized by proving that all terms send related inputs to related out-
puts. Now we explain what it means technically in a simple case.

We assume given X0 and X1 two types together with a relation:

X∗ :X0 → X1 → U

Then for any simple type A depending only on a type variable X, we define A0

as A[X/X0] and A1 as A[X/X1]. Now we define inductively A∗ :A0 → A1 → U
extending X∗ :X0 → X1 → U :

(A×B)∗((a1, b1), (a2, b2)) ≡ A∗(a1, a2)×B∗(b1, b2) (1)

(A→ B)∗(f, g) ≡ (a0 :A0)→ (a1 :A1)→ (a∗ :A∗(a0, a1))

→ B∗(f(a0), g(a1)) (2)

For any term a in A, there are two obvious terms a0 :A0 and a1 :A1. What is less
obvious is that it is possible to build a∗ :A∗(a0, a1) inductively on a. In [5] this
translation of a to a∗ is extended to Intensional Type Theory. An important
technical idea for us is to define the relation A∗ by induction on A.
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We sketch an interesting application. Assume we have a term:

f : (X : U)→ X → X

Then using:
f∗ : (X0, X1 : U)→ (R :X0 → X1 → U)

→ (x0 :X0)→ (x1 :X1)→ R(x0, x1)→ R(f(X0, x0), f(X1, x1))

It is easy to build a term in:

(X : U)→ (x :X)→ (P :X → U)→ P (x)→ P (f(X,x))

From this one can conclude that in a set-theoretic semantic type theory, all
terms of type (X : U) → X → X will be interpreted as the polymorphic
identity function.

Note that the existence of a∗ is external to type theory, because it is proved
by induction on terms. For example the formula:

(f : (X : U)→ X → X)→ (X : U)→ (x :X)

→ (P :X → U)→ P (x)→ P (f(X,x))

is not provable. Parametricity can be internalized to type theory, as indicated
for example in [4, 6]. It was already noted at this point that parametric and
higher dimensional type theories are linked, and they have influenced each other
since then. This is manifest in [10], where a Parametric Cubical Type Theory
is presented. Parametric and cubical features are introduced in a strikingly
parallel fashion:

Cubical Parametric
Dimension names: Color names:

i, j, ... i, j, ...
Path types: Bridge types:
PathA(x, y) BridgeA(x, y)

Paths constructor: Bridges constructor:
λi.t : PathA(t[i/0], t[i/0]) λi.t : BridgeA(t[i/0], t[i/1])

Univalence axiom: Relativity axiom:
PathU (A,B) ' (A ' B) BridgeU (A,B) ' (A→ B → U)

So this shows that cubical techniques can be used to internalize parametric-
ity. On the other hand it is possible to use parametric techniques to internal-
ize higher dimensional features to type theory. For example [1] presents some
progress toward a cubical type theory without interval. In this theory identity
types are defined by induction on types, in the same way that relations are
defined by induction on types when using parametricity. Then we have an easy
and natural way to guarantee univalence: A =U B is defined as A ' B. This
technique is also used in [26] to generate computationally effective transport of
some libraries along equivalences in Coq.
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Another line of thought worth mentioning here is the use of parametricity
and cubical ideas to build extensional type theories, i.e. type theories where
the iterated identity types are all inhabited. An early example is Observational
Type Theory [2], which uses a closed universe. The main idea is to define
equalities between types and heterogeneous equalities between inhabitants by
induction on the universe. This is reminiscent of parametricity. On the other
hand XTT [24] is built using cubical techniques, with the rule that two paths
with the same endpoints are definitionally equal.

1.5 Overview of our theory

We want to build a type theory where identity types are characterized by an
abstract interval, and are computed by induction on types. We need to make
both points of view cohabit harmoniously.

We will use heterogeneous equalities, i.e. equalities over equalities between
types. They are defined by the following rules:

Γ ` ε :A =λi.U B

Γ ` =ε :A→ B → U

Γ, i ` a :A

Γ ` λi.a : a[i/0] =λi.A a[i/1]

Γ, i,Γ′ ` p : a =ε b

Γ, i,Γ′ ` p(i) : ε(i)

We write â for λi.a when i does not occur in a. We also write =A rather
than =Â , to emphasize the link with the usual homogeneous identity types.

Now we define the type A ' B of equivalences between A and B. An
inhabitant ε :A ' B consists of:

• A relation =ε :A→ B → U .

• A function −→ε :A→ B such that for all a :A we have a =ε
−→ε (a).

• A function ←−ε :B → A such that for all b :B we have ←−ε (b) =ε b.

• Some additional data guaranteeing that −→ε and ←−ε are inverse to each
other.

Recall that we want to compute identity types, as a first step we add the
rule:

(A =U B) ≡ (A ' B)

Moreover if ε : A =U B, we identify =ε with the underlying relation of ε
seen as an equivalence, justifying the overloaded notations.
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Remark 2. We add that: −→
Â ≡ λ(x :A).x

This rule is called regularity. More generally we add rules explaining how to
compute with Â seen as an equivalence.

Note that there is no known model for both univalence and regularity. The
semantic side of this problem is discussed in [25], which shows that regularity is
false in certain presheaves models of Cubical Type Theory. We add this principle
nevertheless, although we will be careful about its uses. If it turns out to imply
a contradiction it will be restrained in a reasonable way.

Note that heterogeneous identity types allow to define the types of cubes.
Indeed assume given A : U and p : a1 =A a2 and q : a3 =A a4, then:

λi.p(i) =A q(i) : (a1 =A a3) =U (a2 =A a4)

and for r : a1 =A a3 and s : a2 =A a4, we have that:

r =λi.p(i)=Aq(i) s

is the type of squares in A with border depicted as:

a1 a2

a3 a4

p

r s

q

This can be iterated to define cubes in arbitrary dimensions.
This also allows to define Kan compositions, for example for p : a =A b and

q : b =A c we define:

p ◦ q ≡
−−−−−−−−→
λi.a =A q(i)(p) : a =A c

which corresponds intuitively to the concatenation of the paths p and q. Note
that we have a square with border depicted as:

a a

b c

â

p p◦q

q

Now we need to give rules for identity types, as we already did for A =U B.
For example we add:

(s1, s2) =λi.A×B (t1, t2) ≡ (s1 =λi.A t1)× (s2 =λi.B t2) (3)

f =λi.A→B g ≡ (a0 :A[i/0])→ (a1 :A[i/1])

→ a0 =λi.A a1

→ f(a0) =λi.B g(a1) (4)
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Note the similarity with Equations 1 and 2. These rules can be extended to Σ
and Π-types.

Then we need to explain what to do with terms λi.t when they are eliminated
using their reduced type. For example we add:

(λi.(a, b)).1 ≡ λi.a

This is well typed because λi.(a, b) is a path in A × B, hence a pair of a path
in A and a path in B, so its first projection is indeed a path in A.

Similarly
−−−−−−→
λi.A→ B needs to be reduced to something depending on λi.A

and λi.B, indeed we add:

−−−−−−→
λi.A→ B ≡ λf.

−−→
λi.B ◦ f ◦

←−−
λi.A

More generally we need to reduce all the components of the equivalence:

λi. T (x :A).B

(where T is Σ or Π) to expressions depending on λi.A and λi.B. Note that this
should respect the rules for constant paths, for example:

λ(f :A[i/0]→ B[i/0]).
−−→
λi.B ◦ f ◦

←−−
λi.A

should be definitionally equal to the identity function when i does not occur in
A and B. This is easy to check in this case using the η-rule for arrow types.

Once we have given all these rules we know how to compute with λi.t when-
ever t is canonical (i.e. begins by a constructor). So it is reasonable to hope that
λi can be eliminated from closed terms in suitable types, although of course λi
can not be eliminated when there are type variables.

The fact that identity types can be computed has some pleasant conse-
quences, for example if we have A,B : U depending on i, we do not need to
explain how λi.A =U B computes, because this term is equal to λi.A ' B, so
we know how it computes by using the rules for Σ and Π-types.

2 Definition

We give a precise definition for our theory, filling the details missing from Section
1.5.

2.1 Basic theory

First we present a type theory with Π, Σ (with η-rules) and a hierarchy of
universes à la Russell, without identity types. This is standardl.

Recall that we write the syntactic substitution of x by a in A as A[x/a].
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2.1.1 A core type theory with universes

We use a hierarchy of universes Un indexed by external natural numbers.
There are two kinds of judgments:

Γ `

meaning that Γ is well formed and:

Γ ` a ≡ b :A

meaning that a and b are terms of type A, and that they are definitionally equal.
We write Γ ` a :A as a shorthand for Γ ` a ≡ a :A.

We add the rules for axioms and conversion. The first one says that the
empty context is well-formed.

`

Γ ` A : Un
Γ, x :A `

Γ, x :A,Γ′ `
Γ, x :A,Γ′ ` x :A

Γ ` a ≡ a′ :A Γ ` A ≡ B : Un
Γ ` a ≡ a′ :B

We omit the rules stating that definitional equality is an equivalence and
congruence. From now on we will omit the hypothesis of wellformedness for
context, so that we will never write:

Γ `

again.
We add the following rules for the universes, one for each natural number n:

Γ ` Un : Un+1

2.1.2 Σ-types

We add the following rules:

Γ ` A : Um Γ, x :A ` B : Un

Γ ` Σ(x :A).B : Umax(m,n)

Γ ` a :A Γ ` b :B[x/a]

Γ ` (a, b) : Σ(x :A).B

12



Γ ` c : Σ(x :A).B

Γ ` c.1 :A

Γ ` c : Σ(x :A).B

Γ ` c.2 :B[x/c.1]

Then we add the usual computation rules:

(a, b).1 ≡ a (5)

(a, b).2 ≡ b (6)

Together with the η-rule:

(c.1, c.2) ≡ c (7)

We write A×B for Σ(x :A).B when x does not occur in B.

2.1.3 Π-types

We add the following rules:

Γ ` A : Um Γ, x :A ` B : Un

Γ ` Π(x :A).B : Umax(m,n)

Γ, x :A ` b :B

Γ ` λ(x :A). b : Π(x :A).B

Γ ` f : Π(x :A).B Γ ` a :A

Γ ` f(a) :B[x/a]

We add the usual computation rule:

(λ(x :A). b)(a) ≡ b[x/a] (8)

Together with the η-rule, valid when x does not occur in f :

λ(x :A). f(x) ≡ f (9)

We write A→ B for Π(x :A).B when x does not occur in B. We often write
(x :A)→ B rather than Π(x :A).B.
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2.2 Univalent identity types

Now we define identity types similar to path types in Cubical Type Theory, and
add univalence by definition.

2.2.1 The identity types

We assume given some dimension names i, j, and so on.
We define heterogeneous identity types, the constructor λi and the applica-

tion of a path to i:

Γ ` ε :A =λi.Un B

Γ ` =ε :A→ B → Un

Γ, i ` a :A

Γ ` λi.a : a[i/0] =λi.A a[i/1]

Γ, i,Γ′ ` p : a =ε b

Γ, i,Γ′ ` p(i) : ε(i)

Remark 3. In these rules a[i/0] and a[i/1] are defined by induction on a. The
main case is p(i) with p : a =ε b, for which we define (p(i))[i/0] as a[i/0] and
(p(i))[i/1] as b[i/1]. Otherwise [i/0] and [i/1] simply go through the terms like
a substitution.

We add the obvious computation rule:

(λi. a)(j) ≡ a[i/j] (10)

Together with an η-rule for paths, valid when i does not occur in p:

λi. p(i) ≡ p (11)

Remark 4. The two first rules look circular. More precisely it is not obvious
that types are well-formed in:

Γ ` ε :A =λi.Un BForm= Γ ` =ε :A→ B → Un

Γ, i ` a :A
Intro=

Γ ` λi.a : a[i/0] =λi.A a[i/1]

If we say that Intro= is of level n when its premise is in Un, and Form=

is of level n when its conclusion is in Un. Then Intro= and Form= at level
n are well-formed using Intro= and Form= at level n + 1. This is the same
situation than for Un :Un+1, rules of level n are well-formed because of rules of
level n+ 1.

We denote by â the term λi.a when i does not occur in a, and we denote
=Â by =A .

14



2.2.2 Equivalences

We use the definition of equivalence from [1].

Definition 1. We define an equivalence between A and B in Un as the data of:

• A relation R :A→ B → Un

• A function f :A→ B such that for all a :A, we have F (a) :R(a, f(a)).

• A function g :B → A such that for all b :B, we have G(b) :R(g(b), b).

• For any a :A, b :B and p :R(a, b):

– An element
−→
coh(p) : f(a) =B b such that F (a) =

λi.R(a,
−→
coh(p)(i))

p.

– An element
←−
coh(p) : a =A g(b) such that p =

λi.R(
←−
coh(p)(i),b)

G(b).

We denote by A ' B the type of equivalences between A and B. Note that
it is is clearly definable in our theory.

2.2.3 Univalence by definition

We add the rule:

(A =Un B) ≡ (A ' B) (12)

For ε : A =Un B, we add that the underlying relation of ε is definitionally
equal to =ε .

Remark 5. We did not define =ε as the underlying relation of an equiv-
alence because heterogeneous equalities are already needed in the definition of
equivalence.

Remark 6. Note that for A,B : Un, both A =Un B and A ' B are in Un+1.
This is in contrast with the usual definitions of equivalence, where A ' B is in
Un.

Now we will give notations for the elements extracted from an equivalence
ε :A =Un B. We only give their types, using {x :A} → B to mean that x is an
implicit argument:

15



−→ε : A→ B (13)
−→−→ε : (x :A)→ x =ε

−→ε (x) (14)
−−→
cohε : {x :A} → {y :B} → (p : x =ε y)→ −→ε (x) =B y (15)
−−→−−→
cohε : {x :A} → {y :B} → (p : x =ε y)→ x̂ =

λi.
−→−→ε (x)(i)=ε(i)p(i)

−−→
cohε(p) (16)

←−ε : B → A (17)
←−←−ε : (y :B)→←−ε (y) =ε y (18)
←−−
cohε : {x :A} → {y :B} → (p : x =ε y)→ x =A

←−ε (y) (19)
←−−←−−
cohε : {x :A} → {y :B} → (p : x =ε y)→

←−−
cohε(p) =

λi.p(i)=ε(i)
←−←−ε (y)(i)

ŷ (20)

Note that these are only notations, in the sense that A ' B is in fact a
Σ-type. For example if ε : A =Un B, then the term ε.1 makes sense and is of
type A→ B → Un.

Note that
−−→−−→
cohε is not the square H appearing in the definition of equivalence,

but rather its transpose λi.λj.H(j, i).
We denote by 〈 , · · · , 〉 the constructor of equivalences taking nine argu-

ments. We have computation rules, which can be deduced from the definition
of equivalences. For example:

a =〈R,··· 〉 b ≡ R(a, b)

and −−−−−−→
〈R, f, · · · 〉 ≡ f

2.2.4 Rules for constant path types

For A : Un, the term Â :A =Un A can be seen as an equivalence. We add some
rules to compute its components:

−→
Â ≡ λ(x :A). x (21)
−→−→
Â ≡ λ(x :A). x̂ (22)

−−−→
cohÂ ≡ λ(p : a =Â b).

−−−−−−−−→
λi.a =A p(i)(â) (23)

−−−→−−−→
cohÂ ≡ λ(p : a =Â b).

−−−−−−−−→−−−−−−−−→
λi.a =A p(i)(â) (24)

Remark 7. As explained in the introduction one should be careful about those
rules, as there is no known univalent model for them.

We omit the rules in the other direction, i.e. for
←−
Â ,

←−←−
Â ,
←−−−−
cohλi.A and

←−−−−←−−−−
cohλi.A.

From now on we will do this systematically.
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2.3 Toward full computation

At this point, paths in a universe can be built in two ways, as an equality
using λi or as an equivalence using 〈 , · · · , 〉. In this section we indicate
how to compute with equalities seen as equivalences. We will generalize these
computations to all identity types.

2.3.1 The goal

For each type constructor T taking A and B as an argument (i.e. T is Σ or Π),
we need to give:

• A way to reduce:
s =λi.T (A,B) t

to something depending on λi.A and λi.B. We denote its constructors
and eliminators by cons= and elim=.

• We should also reduce
−−−−−−−→
λi.T (A,B) (resp.

−−−−−−−→−−−−−−−→
λi.T (A,B)) to something de-

pending on λi.A and λi.B. Moreover the given reduct must be the identity
(resp. a constant path) when i does not occur in A or B.

• We do not need to give anything for
−−−−−−−−→
cohλi.T (A,B) and

−−−−−−−−→−−−−−−−−→
cohλi.T (A,B), as for

p : s =λi.T (A,B) t we can define them:

−−−−−−−−→
cohλi.T (A,B)(p)

4
≡
−−−−−−−−−−−−−−−−−−−−−−−−−−−→
λj.
−−−−−−−→−−−−−−−→
λi.T (A,B)(s)(j) =T (A,B)[i/j] p(j)(ŝ) (25)

−−−−−−−−→−−−−−−−−→
cohλi.T (A,B)(p)

4
≡

−−−−−−−−−−−−−−−−−−−−−−−−−−−→−−−−−−−−−−−−−−−−−−−−−−−−−−−→
λj.
−−−−−−−→−−−−−−−→
λi.T (A,B)(s)(j) =T (A,B)[i/j] p(j)(ŝ) (26)

These expressions can be simplified using the fact that:

−−−−−−−→−−−−−−−→
λi.T (A,B)(s)(j) =T (A,B)[i/j] p(j)

can be simplified.

This will guarantee that the rules for
−→
coh and

−→−→
coh are respected when i

does not occur in A or B.

• Now we face again the same situation: terms in s =λi.T (A,B) t can be built
either using λi or using cons=. Therefore for c : T (A,B) depending on i,
the term elim=(λi.c) should be expressed depending on c.

It seems reasonable to expect reductions for cons=(c)(j) : T (A,B)[i/j]. We
include the natural such reduction for Σ-types, but we did not find any for
Π-types, and neither for 〈 , · · · , 〉(j). We discuss this further in Section 3.1.
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2.3.2 Preliminary: connections

We give an auxiliary definition of certain squares of types built out of a path,
which are usually called connections.

Lemma 1. Assume given ε :A =U B. Then we can build:

εc : Â =λi.A=U ε(i) ε (27)

dε : ε =λi.ε(i)=UB B̂ (28)

We denote (εc)(i, j) by ε(i ∩ j) and (dε)(i, j) by ε(i ∪ j).

Proof. We define δ :A =U B as
−−−−−−−−→
λi.A =U ε(i)(Â). Then we can fill the square:

A A

H

A B

δ

ε

where H is defined as
−−−−−−−−→−−−−−−−−→
λi.A =U ε(i)(Â).

We use a Kan composition to fill the inner square in:

A A

A A A A

H

A A B A

H

A A

ε

ε δ

δ

This defines εc. The term dε is defined similarly.
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Remark 8. We explain the intuition behind the notation ε(i ∪ j).
If we use the analogy between a dimension name i and an element in the

topological interval [0, 1], then ε : A =U B is a function from [0, 1] to U and εc
can be seen as the function which takes i and j in [0, 1] and outputs ε(max(i, j)).
This justify the notation ε(i ∪ j).

Next lemma uses regularity.

Lemma 2. We have that:

Â(i ∩ j) ≡ A (29)

Â(i ∪ j) ≡ A (30)

when i and j do not occur in A.

Definition 2. For ε :A =U B and p : a =ε b, we define:

←−−
coh2

ε(p)
4
≡
←−−−−−−−−−−−−−−−−
λi.a =λj.ε(i∩j)

←−←−ε (b)(i)(p) : a =A[i/0]
←−ε (b) (31)

←−−←−−
coh2

ε(p)
4
≡
←−−−−−−−−−−−−−−−−←−−−−−−−−−−−−−−−−
λi.a =λj.ε(i∩j)

←−←−ε (b)(i)(p) :
←−−
coh2

ε(p) =
λi.a=ε(i∩j)

←−←−ε (b)(i)
p (32)

We have the following computation rules:

←−−−
coh2

Â
(p) ≡ p (33)

←−−−←−−−
coh2

Â
(p) ≡ p̂ (34)

Note that
←−−
coh2

ε(p) has the same type as
←−−
cohε(p) but computes differently,

and

←−−←−−
coh2

ε(p) does not have the same type as
←−−←−−
cohε(p).

2.3.3 Σ-types

Now we give the rules for equalities in Σ-types.
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(a, b) =λi.Σ(x:A).B (a′, b′) ≡ Σ(p : a =λi.A a
′). b =λi.B[x/p(i)] b

′ (35)

−−−−−−−−−→
λi.Σ(x :A).B(a, b) ≡

(
−−→
λi.A(a),

−−−−−−−−−−−−−→
λi.B[x/

−−→−−→
λi.A(a)(i)](b)

)
(36)

−−−−−−−−−→−−−−−−−−−→
λi.Σ(x :A).B(a, b) ≡

−−→−−→λi.A(a),

−−−−−−−−−−−−−→−−−−−−−−−−−−−→
λi.B[x/

−−→−−→
λi.A(a)(i)](b)

 (37)

(λi.c).1 ≡ λi.(c.1) (38)

(λi.c).2 ≡ λi.(c.2) (39)

(p, q)(i) ≡ (p(i), q(i)) (40)

Remark 9. As explained earlier, the conversion rule for
−−−−−−−−−−→
cohλi.Σ(x:A).B(p1, p2)

with p1 : a =λi.A a′ and p2 : b =λi.B[x/p1(i)] b
′ can be deduced from the previous

rules. We give it explicitly:

−−−−−−−−−−→
cohλi.Σ(x:A).B(p1, p2)

≡

−→δ (â) ,

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

λj.

−−−−−−−−−−−→−−−−−−−−−−−→
λi.B[x/

−−→−−→
λi.A(a)](b)(j) =

λi.B[i/j][x/
−→−→
δ (â)(j,i)]

p2(j)(̂b)


where δ is λj.

−−→−−→
λi.A(a)(j) =A[i/j] p1(j).

2.3.4 Π-types

Now we explain how identity types in Π-types behave.

f =λi.Π(x:A).B f ′ ≡ (a0 :A[i/0])→ (a1 :A[i/1])

→ (a∗ : a0 =λi.A a1)

→ f(a0) =λi.B[x/a∗(i)] f
′(a1) (41)

−−−−−−−−−→
λi.Π(x :A).B(f) ≡

−−−−−−−−−−−−−→
λi.B[x/

←−−←−−
λi.A(a)(i)] ◦ f ◦

←−−
λi.A (42)

−−−−−−−−−→−−−−−−−−−→
λi.Π(x :A).B(f) ≡ See below (43)

(λi.f)(a0, a1, a∗) ≡ λi.f(a∗(i)) (44)

Note that we did not find a satisfying rule for:

(λa0, a1, a∗. t)(j) : Π(x :A[i/j]).B[i/j]

We discuss this problem in Section 3.1.
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Lemma 3. Assume Γ, i ` A : U and Γ, i, x :A ` B : U .
Assume given f : (x :A[i/0])→ B[i/0].
Then for any a :A[i/0], a′ :A[i/1] and p : a =λi.A a

′ there exists:

ψf (a, a′, p) : f(a) =λi.B[x/p(i)]

−−−−−−−−−−−−−→
λi.B[x/

←−−←−−
λi.A(a)(i)]

(
f(
←−−
λi.A(a′))

)
Moreover if i does not occur in A and B, then:

ψf (a, a′, p) ≡ λk.f(p(k))

Proof. We denote:

f(a) =λi.B[x/p(i)]

−−−−−−−−−−−−−−→
λi.B[x/

←−−←−−
λi.A(a′)(i)](f(

←−−
λi.A(a′)))

by Ψ(a, a′, p), so that our goal is to give a term in Ψ(a, a′, p). Recall that coh2
λi.A

first occurred in Definition 2. Then we define:

r
4
≡
←−−−−
coh2

λi.A(p) : a =
Â{0/i}

←−−
λi.A(a′)

H
4
≡
←−−−−←−−−−
coh2

λi.A(p) : r =
λi.a=λj.A(i∩j)

←−−←−−
λi.A(a′)(i)

p

G
4
≡ λi.f(a) =λj.B[x/H(i,j)]

−−−−−−−−−−−−−−→−−−−−−−−−−−−−−→
λi.B[x/

←−−←−−
λi.A(a′)(i)]

(
f(
←−−
λi.A(a′))

)
(i)

So that:

G :
(
f(a) =λj.B[x/r(j)] f(

←−−
λi.A(a′))

)
=Um Ψ(a, a′p)

And finally we define:

ψf (a, a′, p)
4
≡
−→
G(λk.f(r(k)))

If i does not occur in A and B, then r ≡ p and H is just the constant path
p̂. Therefore G is a constant path and ψ(a, a′, p) ≡ λk.f(p(k)).

We are now ready to add the rule:

−−−−−−−−−→−−−−−−−−−→
λi.Π(x :A).B(f) ≡ λa0, a1, a∗. ψf (a0, a1, a∗) (45)

Remark 10. If i does not occur in A and B, then:

−−−−−−−−−→−−−−−−−−−→
λi.Π(x :A).B(f) ≡ λa0, a1, a∗.λk.f(a∗(k))

But regularity requires this expression to be a constant path. This can be checked:

f̂ ≡ λa0, a1, a∗. (λk.f)(a0, a1, a∗) ≡ λa0, a1, a∗.λk.f(a∗(k))

The first conversion is the η-rule for Π-types, and the second conversion is a
consequence of Equation 44.
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3 Discussion

In this section we include several informal discussions about our system and its
possible extensions.

3.1 Computations in our system

In this section we discuss computations in our system, and we provide a tentative
syntax for normal forms.

3.1.1 Definitional isomorphisms and Σ-types

The following notion will be useful in the next discussion.

Definition 3. Two types A and B are called definitionally isomorphic if there
exist f :A→ B and g :B → A such that:

g ◦ f ≡ λ(a :A). a

and
f ◦ g ≡ λ(b :B). b

A guiding principle is that it is innocuous to identify two types definitionally
isomorphic. In this case we say that the identification is natural. The identity
types in Σ-types provide a good example, indeed consider:

(a, b) =λi.Σ(x:A).B (a′, b′)

and
Σ(p : a =λi.A a

′). (b =λi.B[x/p(i)] b
′)

Denoting the first type by A and the second one by B, we can show that
they are definitionally isomorphic using:

λH.
(
λi.(H(i).1), λi.(H(i).2)

)
: A→ B (46)

λG.λi.
(
G.1(i), G.2(i)

)
: B → A (47)

Therefore the conversion rule:

(a, b) =λi.Σ(x:A).B (a′, b′) ≡ Σ(p : a =λi.A a
′). (b =λi.B[x/p(i)] b

′)

is a natural identification. From the definitional isomorphism it is easy to
deduce the rules to compute with (p, q)(i), (λi.c).1 and (λi.c).2. Conversely
one can find the definitional isomorphism from the computation rules, both
problems are equivalent.
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3.1.2 Heterogeneous function extentionality

Now we inspect the identification:

f =λi.Π(x:A).B f ′

≡ (a0 :A{0/i})→ (a1 :A{1/i})→ (a∗ :a0 =λi.A a1)→ f(a0) =λi.B[x/a∗(i)] f
′(a1)

We denote the second type by Ext(f, g) . Then we have:

λH.λa0, a1, a∗.λi.H(i, p(i)) : f =λi.Π(x:A).B f ′ → Ext(f, g) (48)

But we were not able to find a suitable function the other way yet. This
explain the incomplete computation rules for Π-types.

The first try for a term in:

Ext(f, g)→ f =λi.Π(x:A).B f ′

would be:
λG.λi.λx.G(λi.x)(i)

but this is not well-typed because of λi.x. The general problem is that in a
context i, x :A we do not know how to see x as a path depending on i.

We believe this identification should be natural, so that we need to either
find a definitional isomorphism or extend our system with some construction
playing the role of λi.x in the first try. Note that we did find maps in:

Ext(f, g)→ f =λi.Π(x:A).B f ′

without the required computational rules, which is encouraging. On the other
hand our attempts to build a reasonable system with λi.x for x a variable
declared after i lead into unknown syntactic territories, so we stopped our in-
vestigations.

In the rest of the discussion we will admit a solution to this problem.

3.1.3 Normal forms

In order to analyze the normal forms in a type theory, it is common to define
syntactically a set of values V (intuitively outputs of algorithm, which can
compute if used in another program) and a set of neutral terms N (intuitively
terms that cannot compute in any context, usually because they are built from
variables). We will give a guess for V and N in our theory.

We introduce a new notation Equiv(ε), which is the second projection of
ε : A =U B. So it consists of all the data making =ε : A → B → U the
underlying relation of an equivalence.

Definition 4. We define the set neutral terms N and values V by induction:

N : = x | N(i) | N.1 | N.2 | N(V ) |
=λi.N | Equiv(λi.N) | 〈V, · · · , V 〉(i) (49)
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V : = N | λi.V | (V, V ) | λx.V |
Σ(x : V ).V | Π(x : V ).V | Un (50)

We described normal forms as if the identification for Π-types was natural,
although we have already explained we were not yet able to provide a proof of
this. On the other hand the rule:

(A =U B) ≡ (A ' B)

is unnatural and we believe this is unfixable. This explains the unusual neutral
terms =λi.N , Equiv(λi.N) and 〈V, · · · , V 〉(i).

We conjecture that once the problem with Π is fixed, a term in normal form
in our system will belong to the the syntactic category V .

Remark 11. For this result to hold reduction rules should be slightly changed,

e.g. we want to reduce
−−−−−−−−−→
λi.Σ(x :A).B directly instead of

−−−−−−−−−→
λi.Σ(x :A).B(a, b).

It should be noted that there is no hope for the reciprocal, for at least two
reasons. Firstly V does not take the observational rules into account, so that
for example with a variable f : A → B, the term λx. f(x) : A → B is in V but
can be reduced to f . Secondly if A : U is a neutral term in which i does not
occur, then Equiv(λi.A) is in V , but can be reduced using the rules for constant
paths between types. We guess these are the only obstructions to a reciprocal,
but we did not investigate this matter further.

3.2 Toward interpretation

We plan to give an interpretation of our theory in some simpler type theory in
order to justify some of its properties, including consistency.

3.2.1 From intensional type theory to our theory

We use an intensional type theory (abreviated ITT) with Un, Π, Σ and identity
types. First we give an easy example of translation: we translate sequent from
ITT to our theory. The cases of Un, Π and Σ are straightforward, indeed our
theory has all the rules of ITT by definition. Now we need to treat the case of
identity types, i.e. the inductive family:

Id : (A : Un)→ A→ A→ Un

in ITT . We write down its rules.

Γ ` A : Un Γ ` a :A Γ ` a′ :A
Γ ` IdA(a, a′) : Un

Γ ` A : Un Γ ` a :A
Γ ` refla : IdA(a, a)
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Γ ` A : Un Γ ` C : {a, b :A} → IdA(a, b)→ Un Γ ` d : (a :A)→ C(refla)

Γ ` JA(P, d) : {a, b :A} → (p : IdA(a, b))→ C(p)

Together with the computation rule:

J(P, d, refla) ≡ d(a) (51)

We interpret IdA(a, b) as a =A b, and refla as â. Now we need to give a
suitable interpretation for J .

Lemma 4. Assume given:
A : Un

C : {a, b :A} → a =A b→ U

and
d : (a :A)→ C(â)

in our theory. It is possible to build a term:

JA(C, d) : {a, b :A} → (p : a =A b)→ C(p)

such that:
JA(C, d, â) ≡ d(a)

Proof. Assume given p : a =A b. We define q : a =A b as
−−−−−−−−→
λi.a =A p(i)(â) and:

H : â =λi.a=Aq(i) p

as the transpose of
−−−−−−−−→−−−−−−−−→
λi.a =A p(i)(â).

Then we define JA(C, d, p) as:

−−−−−−−→
λi.C(H(i))(d(a))

Indeed λi.C(H(i)) : C(â) =U C(p).
Now we check the computation rules. Assume p is â, then:

q ≡ â

H ≡ ̂̂a
λi.C(H(i)) ≡ Ĉ(â)

and finally:
JA(C, d, â) ≡ d(a)
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Note that the proof of the computation rule makes an essential use of regu-
larity.

So we have a translation from ITT to our theory. We know that this trans-
lation validates new principles, most notably univalence. It also validates a lot
of definitional equalities. It would interesting to know precisely what are the
new principles validated, i.e. have a list H of types in ITT such that:

The translation of a type is inhabited in our theory if and only it is inhabited
in ITT + H.

3.2.2 The translation by iterated parametricity

Here we present our main idea for a translation justifying our theory, which acts
as a guide for the design of our system. This is quite speculative as we are still
in the process of convincing ourselves that such a translation exists.

The idea is to use a translation similar to parametricity, where a type is
translated as a pair of types and an equivalence between them rather than a
relation. We call such a translation a univalent translation, and we denote it by
[ ].

Then one could define a translation J K from our theory to some target
theory T , with [ ] going from T to T . It would look like:

Jx :A,Γ ` AK = x :A, JΓ ` AK

Ji,Γ ` AK = [JΓ ` AK]

Of course a lot of details need to be filled, for example we were not careful
at all about the dependencies between types. A conceptual problem is the
interpretation of the identity types in the definition of equivalences. Our idea
is that a type should come with iterated identity types and Kan compositions,
presumably defined by induction on the type. We suspect that this structure
on A is in fact equivalent to the family of the iterated univalent translations of
A. It is not clear yet how to perform this precisely.

Now we would also need to perform J K on term. The most interesting cases
should be Jλi.aK and Jp(i)K.

• We hope that identity types are interpreted using [ ], so that if a :A then
Jλi.aK should be of type [JAK]. But this is the type of a because it is in a
context with one more dimension variable i, so Jλi.aK is very close JaK. We
suspect that JaK is a triplet of two endpoints and a path between them,
and Jλi.aK is the path alone.

• The interpretation of p(i) is less clear, because p and p(i) are in the same
context. In this case JpK is an iterated univalent translation of JAK, with
at least one translation inherited from i and another one from the fact
that p is an equality proof. So we should find a diagonalisation of some
sort, merging the two univalent translations.
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This translation is still very sketchy, but the idea to iterate a univalent
translation once for each dimension name has an important role in the design
of our theory.

Remark 12. Note that other potential translations can be contemplated, for
example to a type theory with a closed universe, i.e. with an internal principle
of induction on the universes.

Technically we would define identity types by induction on the universe, pre-
sumably together with some extra things useful to define equivalences.

3.3 Data types

Our type theory only includes universes, Σ and Π-types, and therefore it is
not suitable to formalize actual mathematics. In this section we give tentative
definitions for some data types.

Since we will only consider types in the empty context and we admitted
regularity, we do not need any rule to compute with equivalences built from
these new types. If regularity turns out to be inconsistent, we should probably
add it for data types only. We will omit the superscripts indicating the universe
levels, so that we do not commit to large or small elimination principles.

This discussion is very preliminary and we do not take into account how the
new types would compute, we only care that they obey the correct equations.

3.3.1 Unit type

We add a singleton type > with η-rule.

Γ ` > : U

Γ ` ∗ :>

For any s :> we add the computation rule:

s ≡ ∗

Next we need to add rules for the identity types in >.

s => t ≡ > (52)

This rule is enough, it implies that ∗(i) and λi.s with s :> are equal to ∗.

Remark 13. We could also add a singleton type without η-rule. In this case
we would add:

Γ ` P :> → U Γ ` c : P (∗)
Γ ` > − rec(P, c) : (x :>)→ P (x)
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and we would replace the η-rule by:

>− rec(P, c, ∗) ≡ c

Then the rules for identity types would be:

∗ => ∗ ≡ >
∗̂ ≡ ∗

∗(i) ≡ ∗

Note that here we need to compute with ∗̂ directly, without waiting for an elimi-
nator >−rec to be applied. This might be a sign that things goes a bit differently
without η-rule, a question not investigated yet.

3.3.2 Empty type

We add ⊥ in each universe.

Γ ` ⊥ : U

Γ ` A : U
Γ ` ⊥ − rec(A) :⊥ → A

For the identity types we add:

s =⊥ t ≡ ⊥ (53)

There is no other reduction rules because there is no canonical inhabitant in
⊥. We could also try with (s =⊥ t) ≡ >, although it would lead to difficulties
when computing with ∗(i) :⊥. It might even be possible to not add any rule for
identity types.

Remark 14. Also note that we do not add rules to deal with ⊥ − rec con-
structing path, because it is an eliminator. But it is possible to find a well-typed
one:

λi.⊥−rec(A, c) ≡ ⊥−rec(⊥−rec(A[i/0], c[i/0]) =λi.A ⊥−rec(A[i/1], c[i/1]), λi.c)

This rule would break confluence.
In fact it seems always possible to compute with λi applied to an eliminator,

even if these rules break confluence. Indeed this is also the case for Π and Σ-
types, and for the new types we are about to present. It would be interesting to
understand this phenomena, which might have some applications.
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3.3.3 Booleans

We add a type B of booleans.

Γ ` B : U

Γ ` true : B

Γ ` false : B

Γ ` P : B→ U Γ ` c0 : P (true) Γ ` c1 : P (false)

Γ ` B− rec(P, c0, c1) : (b : B)→ P (b)

We add the usual conversion rules:

B− rec(P, c0, c1, true) ≡ c0 (54)

B− rec(P, c0, c1, false) ≡ c1 (55)

Now we need to treat the identity types. We add the rules:

true =B true ≡ > (56)

true =B false ≡ ⊥ (57)

false =B true ≡ ⊥ (58)

false =B false ≡ > (59)

Note that the rule for t̂rue ≡ ∗ and f̂alse ≡ ∗ are already consequences of
the η-rule for >. Similarly for ∗ : true =B true we have:

∗(i) ≡ t̂rue(i) ≡ true

So we do not need to add any more rule to B because we already have all the
equations we want. If we were concerned with normal forms, we would add
reductions.

Remark 15. It might be problematic that:

(true =B true) ≡ (false =B false)

For example one should be careful about ∗(i) ≡ false and ∗(i) ≡ true (or even
∗(i) ≡ ∗ in the unit type) depending on the type of ∗. A possible alternative
approach would be to generate inductively a family:

EqB : B→ B→ U

with
∗true : EqB(true, true)
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and
∗false : EqB(false, false)

and then add:
s =B t ≡ EqB(s, t)

In this case we would have the reduction rules:

t̂rue ≡ ∗true
f̂alse ≡ ∗false

∗true(i) ≡ true

∗false(i) ≡ false

But this would require inductive families in our theory, taking us beyond the
scope of this discussion.

3.3.4 Natural numbers

Now we add our first recursive type, the type N of natural numbers.

Γ ` N : U

Γ ` 0 : N

Γ ` n : N
Γ ` s(n) : N

Γ ` P : N→ U Γ ` c0 : P (0) Γ ` cs : {n : N} → P (n)→ P (s(n))

Γ ` N− rec(P, c0, cs) : (n : N)→ P (n)

We add the usual computation rules:

N− rec(P, c0, cs,0) ≡ c0 (60)

N− rec(P, c0, cs, s(n)) ≡ cs(N− rec(P, c0, cs, n)) (61)

And finally the rules for identity types:

0 =N 0 ≡ > (62)

0 =N s(n) ≡ ⊥ (63)

s(m) =N 0 ≡ ⊥ (64)

s(m) =N s(n) ≡ m =N n (65)
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Then we want to add rules to compute for s and paths (as before the rules
for 0 are consequences of the η-rule for >). The first try would be:

λi.s(n) ≡ λi.n (66)

p(i) ≡ s(p(i)) (67)

where the second equation should only apply when p is built in m =N n, and
then seen as an element of s(m) =N s(n). These equations look very unsafe,
next remark gives a more reasonable approach.

Remark 16. In order to write sensible computation rules, we really ought to
define:

EqN : N→ N→ U
inductively with

∗0 : EqN(0,0)

and
∗s : EqN(m,n)→ EqN(s(m), s(n))

Then we would be able to add:

m =N n ≡ EqN(m,n)

and the rules:

0̂ ≡ ∗0
λi.s(n) ≡ ∗s(λi.n)

∗0(i) ≡ 0

∗s(p)(i) ≡ s(p(i))

which look more reasonable.

To summarize this discussion about data types, it seems that a valid strategy
would be to define their intended identity types as an inductive family, and then
add some natural rules for λi and application to i. It seems that in general (i.e.
without η-rule) we need to reduce λi.t directly, without waiting for it to be
eliminated.

3.4 More general inductive types

Now we will consider some polymorphic inductive types. Using insights from
our discussion on datatypes, we will proceed using an inductively defined family
Eq to compute with identity types. Since we do not define inductive families
in our system this is really an informal discussion, a first step toward inductive
types in our theory.

In this whole section we omit arguments when they are endpoints of paths.
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3.4.1 Disjoint Unions

We add the rule for disjoint union.

Γ ` A : U Γ ` B : U
Γ ` A+B : U

Γ ` a :A
Γ ` inc1(a) :A+B

Γ ` b :B
Γ ` inc2(b) :A+B

Γ ` P :A+B → U Γ ` f : (x :A)→ P (inc1(x)) Γ ` g : (y :B)→ P (inc2(y))

Γ ` +− rec(P, f, g) : (x :A+B)→ P (x)

Note that we omitted type subscripts on inc1 and inc2, as they are easy to
infer from the context. Now we add the computation rules:

+− rec(P, f, g, inc1(a)) ≡ f(a) (68)

+− rec(P, f, g, inc2(b)) ≡ g(b) (69)

Then for identity types, we define inductively a family:

Eqλi.A+B : (A+B)[i/0]→ (A+B)[i/1]→ U

with
∗1 : a =λi.A a

′ → Eqλi.A+B(inc1(a), inc1(a′))

and
∗2 : b =λi.B b′ → Eqλi.A+B(inc2(b), inc2(b′))

Then we add:

s =λi.A+B t ≡ Eqλi.A+B(s, t) (70)

λi.inc1(a) ≡ ∗1(λi.a) (71)

λi.inc2(b) ≡ ∗2(λi.b) (72)

∗1(p)(i) ≡ inc1(p(i)) (73)

∗2(q)(i) ≡ inc2(q(i)) (74)

Finally we need to explain how to compute with λi.A+B seen as an equiv-
alence:

−−−−−−→
λi.A+B(inc1(a)) ≡ inc1(

−−→
λi.A(a)) (75)

−−−−−−→
λi.A+B(inc2(b)) ≡ inc2(

−−→
λi.B(b)) (76)

−−−−−−→−−−−−−→
λi.A+B(inc1(a)) ≡ ∗1(

−−→−−→
λi.A(a)) (77)

−−−−−−→−−−−−−→
λi.A+B(inc2(b)) ≡ ∗2(

−−→−−→
λi.B(b)) (78)
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3.4.2 Lists

We add the rules for lists.

Γ ` A : U
Γ ` ListA : U

Γ ` nilA : ListA

Γ ` a :A Γ ` l : ListA
Γ ` a _ l : ListA

Γ ` P : ListA → U Γ ` c : P (nilA) Γ ` f : (a :A)→ (l : ListA)→ P (l)→ P (a _ l)

Γ ` ListA − rec(P, c, f) : (x : ListA)→ P (x)

With:

ListA − rec(P, c, f,nilA) ≡ c (79)

ListA − rec(P, c, f, a _ l) ≡ f(a, l,ListA − rec(P, f, l)) (80)

Now we define inductively:

Eqλi.ListA : ListA[i/0] → ListA[i/1] → U

with
∗nil : Eqλi.ListA(nilA[i/0],nilA[i/1])

and

∗_ : a =λi.A a
′ → Eqλi.ListA(l, l′)→ Eqλi.List1(a _ l, a′ _ l′)

Then we add conversion rules for identity types:

l =λi.ListA l
′ ≡ Eqλi.ListA(l, l′) (81)

λi.nilA ≡ ∗nil (82)

λi. a _ l ≡ ∗_(λi.a, λi.l) (83)

∗nil(j) ≡ nilA[i/j] (84)

∗_(p, q)(j) ≡ p(j) _ q(j) (85)

And now we explain how to compute with λi.ListA seen as an equivalence:

−−−−−→
λi.ListA(nilA[i/0]) ≡ nilA[i/1] (86)
−−−−−→
λi.ListA(a _ l) ≡

−−→
λi.A(a) _

−−−−−→
λi.ListA(l) (87)

−−−−−→−−−−−→
λi.ListA(nilA[i/0]) ≡ ∗nil (88)
−−−−−→−−−−−→
λi.ListA(a _ l) ≡ ∗_(

−−→−−→
λi.A(a),

−−−−−→−−−−−→
λi.ListA(l)) (89)
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3.4.3 W-types

We add the rules for W-types, which represent well-founded trees.

Γ ` A : U Γ ` B :A→ U
Γ `W(A,B) : U

Γ ` a :A Γ ` f :B(a)→W(A,B)

Γ ` cons(a, f) : W(A,B)

We omit the elimination principle.
Now we define inductively:

Eqλi.W(A,B) : W(A,B)[i/0]→W(A,B)[i/1]→ U

with
∗cons : {a :A[i/0]} → {a′ :A[i/1]} → (p : a =λi.A a

′)

→
(
{b :B[i/0]} → {b′ :B[i/1]} → b =λi.B(p(i)) b

′ → Eqλi.W(A,B)(f(b), f ′(b′))
)

→ Eqλi.W(A,B)(cons(a, f), cons(a′, f ′))

Then we add:

s =λi.W(A,B) t ≡ Eqλi.W(A,B)(s, t) (90)

λi.cons(a, f) ≡ ∗cons(λi.a, λi.f) (91)

∗cons(p, q)(i) ≡ cons(p(i), q(i)) (92)

We also need to explain how to compute with λi.W(A,B) seen as an equiv-
alence:

−−−−−−−−→
λi.W(A,B)(cons(a, f)) ≡ cons

(−−→
λi.A(a),

−−−−−−−−−−−−−−−−−−−−−−→
λi.B(

−−→−−→
λi.A(a)(i))→W(A,B)(f)

)
−−−−−−−−→−−−−−−−−→
λi.W(A,B)(cons(a, f)) ≡ cons

(−−→−−→
λi.A(a),

−−−−−−−−−−−−−−−−−−−−−−→−−−−−−−−−−−−−−−−−−−−−−→
λi.B(

−−→−−→
λi.A(a)(i))→W(A,B)(f)

)

3.4.4 The circle is not so easy

The circle S1 is the only higher inductive type we discuss. We will explain why
the straightforward approach to compute with it fails.

The type S1 is inductively generated by an element base : S1, and a path
loop : base =S1 base. This means that the type base =S1 base is freely
generated by loop, so that it is equivalent to Z. We admit that Z has been
defined in our theory, this is easy using N and disjoint unions.

We give the precise rules for the circle:

Γ ` S1 : U

34



Γ ` base : S1

Γ ` loop : base =S1 base

Γ ` P : S1 → U Γ ` b : P (base) Γ ` l : b =λi.P (loop(i)) b

Γ ` S1 − rec(P, b, l) : (x : S1)→ P (x)

Together with:

S1 − rec(P, b, l,base) ≡ b (93)

S1 − rec(P, b, l, loop(i)) ≡ l(i) (94)

So we just defined the circle by its universal principle. At this point we want
to make its identity types compute, as we did for other types. It is tempting to
add a rule like:

base =S1 base ≡ Z

but it is unclear how to do so. We explain why the naive approach fails.
We denote by Succ the equivalence in Z ' Z with underlying function

λ(x : Z). x+ 1

and Pred its inverse. We use a square Ψ : Succ =λi.Pred(i)=UPred(i) Succ,
certainly definable using the definition of Z. Then we define:

EqS1 : S1 → S1 → U

by double induction on the circle:

EqS1(base,base) ≡ Z (95)

EqS1(base, loop(j)) ≡ Succ(j) (96)

EqS1(loop(i),base) ≡ Pred(i) (97)

EqS1(loop(i), loop(j)) ≡ Ψ(i, j) (98)

Then one could add:
s =S1 t ≡ EqS1(s, t)

Together with the computations:

b̂ase ≡ 0 (99)

loop ≡ 1 (100)

And then I guess m(i) for m a numeral in Z should be considered a normal
form.

But this has some serious drawbacks:
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• The application of S1 − rec to say 2(i) does not compute.

• Composition of paths does not compute, for example
−−−−−−−−−−−→
λi.5(i) =S1 7(i)(2)

seems to be a normal form, so it is a non-canonical element in Z.

In the end these computation rules for S1 are not satisfying at all. Note that
the option to generate EqS1 inductively is not so easily usable because if we just
define:

EqS1 : S1 → S1 → U

using
∗base : Z→ EqS1(base,base)

then EqS1(base,base) contains a lot more than Z, indeed all transport of el-
ements in Z along loop will be added as well. The natural solution seems to
add a constructor ∗loop, then EqS1 is a higher inductive family. We did not
investigate this further.

Overall this discussion shows that the situation for higher inductive types is
less clear that for usual inductive types.

4 Conclusion

We give a list of interesting questions left unsolved.

4.1 Current goals

This work is unfinished, and the following points should be worked on immedi-
ately.

• The problem with computations for Π-types needs to be solved.

• We need to provide an interpretation, at least to justify consistency. This
would also be useful when adding new constructors to our theory. Note
that regularity might break consistency, in which case it will be restrained.

• There are a lot of possible choices of definition for equivalence. We should
think about them, and choose one which allows natural computations. For
example our computation rules for λi.Π(x :A).B are not very straightfor-
ward, can this can be improved?

4.2 Further work

Now we give a list of more ambitious questions:

• Does our theory enjoy canonicity? How to prove it? More generally does
it compute well? Decidability of type checking is far from obvious because
a lot of types are equal in our theory.
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• How to add more general inductive types in our theory? Our discussion on
usual inductive types should be developed further. What about inductive
families? They seem to be necessary for a smooth development of data
types. What about higher inductive types?

• Assume that instead of:

(A =U B) ≡ (A ' B)

we use:

(A =U B) ≡ (A→ B → U)

The notation ” = ” is misleading here, we should probably write e.g. ” ∼ ”
instead. Nevertheless it seems reasonable to expect a theory internalizing
parametricity. Is this true? This can probably be generalized to other
types than A ' B or A → B → U . Which one? What is the meaning of
a theory obtained this way?
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[26] Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau. Equivalences for free:
Univalent parametricity for effective transport. Proceedings of the ACM on
Programming Languages, 2(ICFP):92, 2018.

[27] The univalent foundations program. Homotopy type theory: univalent
foundations of mathematics. Institute for Advanced Study, 2013. https:

//homotopytypetheory.org/book.

[28] Benno Van Den Berg and Richard Garner. Types are weak ω-groupoids.
Proceedings of the London Mathematical Society, 102(2):370–394, 2011.

[29] Philip Wadler. Theorems for free! In FPCA, volume 89, pages 347–359.
Citeseer, 1989.

39

https://homotopytypetheory.org/book
https://homotopytypetheory.org/book

	Introduction
	Intensional Type Theory
	Univalent foundations and Homotopy Type Theory
	Cubical type theory
	Parametricity
	Overview of our theory

	Definition
	Basic theory
	A core type theory with universes
	-types
	-types

	Univalent identity types
	The identity types
	Equivalences
	Univalence by definition
	Rules for constant path types

	Toward full computation
	The goal
	Preliminary: connections
	-types
	-types


	Discussion
	Computations in our system
	Definitional isomorphisms and -types
	Heterogeneous function extentionality
	Normal forms

	Toward interpretation
	From intensional type theory to our theory
	The translation by iterated parametricity

	Data types
	Unit type
	Empty type
	Booleans
	Natural numbers

	More general inductive types
	Disjoint Unions
	Lists
	W-types
	The circle is not so easy


	Conclusion
	Current goals
	Further work


