ヘロン 人間 とくほとう ほとう

1/31

# Finitary Higher Inductive Types in the Groupoid Model

### Peter Dybjer and Hugo Moeneclaey

Chalmers and ENS Paris-Saclay

Gothenburg, December 12, 2018







2 Schema for finitary 2-hits



3 Interpretation in the groupoid model











nterpretation in the groupoid model



### Two different equalities in dependent type theories

There are the usual *judgmental* equalities (which are decidable).

To be able to use induction we need *propositional* equalities. Roughly :

- For any type A and x, y : A, we have an *identity* type  $x =_A y$ .
- We have a canonical inhabitant of  $x =_A x$ .
- If  $x =_A y$  is inhabited, then we can substitute x by y.

# Extensional type theory

How do these identity types look like ?

Extensional type theories

Any type  $x =_A y$  has at most one element.

### This rule is not derivable.

Are there meaningful axioms which implies non-trivial identity types ?

・ロト ・ 一 ト ・ モト ・ モト

# Homotopy type theory

### It is an extension of dependent type theory.

### Two features

- Univalence axiom
- Higher inductive types

Univalence implies non-trivial identity types.

It has a topological interpretation.

# Higher inductive types

#### Intuition

We generate inductively :

- a type H,
- its identity types  $x =_{\mathrm{H}} x'$ ,
- its identity types of identity types  $p =_{x =_{\mathrm{H}} x'} p'$ ,

• etc...

So the type  ${\rm H}$  has constructors building paths, surfaces,  $\ldots$ 

<ロ> (四) (四) (三) (三) (三)

# Higher inductive types of level n

Terminology:

- point constructors for H (level 0)
- path constructors for  $x =_{\mathrm{H}} x'$  (level 1)
- surface constructors for  $p =_{x=_{\mathrm{H}}x'} p'$  (level 2)
- etc...

*n*-hits only have constructors of level  $\leq n$ .

We deal with 2-hits only.

### Examples of 1-hits

| Κ                            | : | CL                                                                                                                                              |
|------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbf{S}$                 | : | CL                                                                                                                                              |
| app                          | : | $\mathrm{CL} \to \mathrm{CL} \to \mathrm{CL}$                                                                                                   |
| $\mathrm{K}_{\mathrm{conv}}$ | : | $(x, y : \operatorname{CL}) \to \operatorname{app}(\operatorname{app}(\operatorname{K}, x), y) =_{\operatorname{CL}} x$                         |
| $\mathrm{S}_{\mathrm{conv}}$ | : | $(x, y, z : \operatorname{CL}) \to \operatorname{app}(\operatorname{app}(\operatorname{app}(\operatorname{S}, x), y), z) =_{\operatorname{CL}}$ |
|                              |   | $\operatorname{app}(\operatorname{app}(x,z),\operatorname{app}(y,z))$                                                                           |

Semantically, it is natural to interpret  ${\rm CL}$  as a setoid (i.e. a set with an equivalence relation on it).

ヘロト 人間ト 人団ト 人団ト

### Example : Circle $S^1$

base : 
$$S^1$$
  
path : base =<sub>S1</sub> base

As a setoid it would be trivial.

Semantically, it is natural to interpret  $S^1$  as some topological object.

<ロ > < 部 > < 書 > < 言 > 言 の < や 10/31

### Groupoids

### Definition

A groupoid is a category where all morphisms are invertible.

How can these be topological objects ?

### The fundamental groupoid

To a space X we associate its fundamental groupoid  $\pi(X)$  :

- objects are the points of X,
- morphisms are path up to continuous deformations.

The fundamental groupoid  $\pi(C)$  of the topological circle C is not trivial.

The hit  $S^1$  will be interpreted as (equivalent to)  $\pi(C)$ .



# We will give a definition for some *finitary* 2-hits and interpret them in the groupoid model of type theory.

#### Remark

Officially we work in set theory, although we conjecture our work can be done in extensional type theory.

ヘロト ヘロト ヘヨト ヘヨト









nterpretation in the groupoid model



## Point constructors for $\operatorname{H}$

### Usual constructors for an inductive type ${\rm T}$

$$(x_{1}: A_{1}) \rightarrow \cdots \rightarrow (x_{m}: A_{m}(x_{1}, \dots, x_{m-1}))$$
  

$$\rightarrow (B_{1,1}(x_{1}, \dots, x_{m}) \rightarrow \cdots \rightarrow B_{1,k_{1}}(x_{1}, \dots, x_{m}) \rightarrow T)$$
  

$$\rightarrow \cdots$$
  

$$\rightarrow (B_{n,1}(x_{1}, \dots, x_{m}) \rightarrow \cdots \rightarrow B_{n,k_{n}}(x_{1}, \dots, x_{m}) \rightarrow T)$$
  

$$\rightarrow T$$

Where T is not occurring in  $A_i$  and  $B_{j,l}$ .

We restrict to finitary hits, i.e. we assume :

### Point constructors for a *finitary* hit H

$$c_0 : (x_1 : A_1) \to \cdots \to (x_m : A_m(x_1, \dots, x_{m-1}))$$
  
 
$$\to H \to \cdots \to H \to H$$

14/31

# Path constructors for H

### Path constructors for a finitary hit H

$$c_{1} : (x_{1}:C_{1}) \rightarrow \cdots \rightarrow (x_{n}:C_{n}(x_{1},\ldots,x_{n}))$$
  

$$\rightarrow (y_{1}:H) \rightarrow \cdots \rightarrow (y_{n'}:H)$$
  

$$\rightarrow p_{1}(x_{1},\ldots,x_{n},y_{1},\ldots,y_{n'}) =_{H} q_{1}(x_{1},\ldots,x_{n},y_{1},\ldots,y_{n'})$$
  

$$\vdots$$
  

$$\rightarrow p_{n''}(x_{1},\ldots,x_{n},y_{1},\ldots,y_{n'}) =_{H} q_{n''}(x_{1},\ldots,x_{n},y_{1},\ldots,y_{n'})$$
  

$$\rightarrow p'(x_{1},\ldots,x_{n},y_{1},\ldots,y_{n'}) =_{H} q'(x_{1},\ldots,x_{n},y_{1},\ldots,y_{n'})$$

Remark :

• H appearing anywhere in  $C_i$  contradicts univalence.

### A simplified schema

### Constructors for a 2-hit ${\rm H}$

$$\begin{array}{rcl} c_{0} & : & A \to H \to H \\ c_{1} & : & (x : B) \to (y : H) \to p(x, y) =_{H} q(x, y) \\ & \to p'(x, y) =_{H} q'(x, y) \\ c_{2} & : & (x : D) \to (y : H) \to (z : p_{3}(x, y) =_{H} q_{3}(x, y)) \\ & \to g_{1}(x, y, z) =_{p_{4}(x, y) =_{H} q_{4}(x, y)} h_{1}(x, y, z) \\ & \to g_{2}(x, y, z) =_{p_{5}(x, y) =_{H} q_{5}(x, y)} h_{2}(x, y, z) \end{array}$$

Where :

- A, B, D are types without H.
- $p, q, p', q', p_3, q_3...$  are point constructor patterns.
- $g_1, h_1, g_2, h_2$  are path constructor patterns

# Point and path patterns

#### Point constructor patterns

$$p ::= y \mid c_0(a, p)$$

with y : H and a : A without H.

#### Path constructor patterns

$$g ::= z \mid c_1(b, p, g) \mid \mathrm{id} \mid g \circ g \mid g^{-1}$$

with  $z : p_3 =_H q_3$  and b : B without H.

17/31

### Elimination principle

For  $x : H \vdash C(x)$ , how can we use induction to define  $f : (x : H) \rightarrow C(x)$  ?

We can define f by pattern matching :

$$f(c_0(x,y)) = \tilde{c_0}(x,y,f(y))$$
  

$$apd_f(c_1(x,y,z)) = \tilde{c_1}(x,y,f(y),z,apd_f(z))$$
  

$$apd_f^2(c_2(x,y,z,t)) = \tilde{c_2}(x,y,f(y),z,apd_f(z),t,apd_f^2(t))$$

These are judgmental equalities.

▲ロト ▲聞 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 三 の

With suitable  $\tilde{c_0},\tilde{c_1},\tilde{c_2},$  we can show this schema is well typed using

$$\begin{aligned} & \mathsf{apd}_f(\mathrm{id}) &= \mathrm{id} \\ & \mathsf{apd}_f(p \circ q) &= \mathsf{apd}_f(p) \circ' \mathsf{apd}_f(q) \\ & \mathsf{apd}_f(p^{-1}) &= \mathsf{apd}_f(p)^{-1'} \end{aligned}$$

These equations are valid in the groupoid model.

# What are $\tilde{c_0},\,\tilde{c_1}$ and $\tilde{c_2}$ ?

We will ask :

$$f(c_0(x,y)) = \tilde{c_0}(x,y,f(y))$$

What is  $\tilde{\mathrm{c_0}}$  ?

$$ilde{c_0}$$
 :  $(x:A) 
ightarrow (y:\mathrm{H}) 
ightarrow C(y) 
ightarrow C(\mathrm{c}_0(x,y))$ 

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

We will ask :

$$\operatorname{apd}_f(\operatorname{c}_1(x, y, z)) = \widetilde{\operatorname{c}_1}(x, y, f(y), z, \operatorname{apd}_f(z))$$

### What is $\tilde{c_1}$ ?

$$\begin{split} \tilde{\mathrm{c_1}} &: & (x:B) \to (y:\mathrm{H}) \to (\tilde{y}:C(y)) \\ &\to (z:p=_\mathrm{H}q) \to \mathrm{T_0}(p) =_z^C \mathrm{T_0}(q) \\ &\to \mathrm{T_0}(p') =_{\mathrm{c_1}(x,y,z)}^C \mathrm{T_0}(q') \end{split}$$

 $T_0(p)$  is the *lifting* of p (meant to be f(p)) defined by :

$$\begin{array}{lll} \mathrm{T}_{0}(y) & = & \tilde{y} \\ \mathrm{T}_{0}(\mathrm{c}_{0}(a,p)) & = & \tilde{\mathrm{c}_{0}}(a,p,\mathrm{T}_{0}(p)) \end{array}$$

æ

▲口 → ▲圖 → ▲ 国 → ▲ 国 → -

### What is $\tilde{c_2}$ ?

$$\begin{split} \tilde{c_2} &: (x:D) \to (y:H) \to (\tilde{y}:C(y)) \to (z:p_3 =_H q_3) \\ &\to (\tilde{z}:T_0(p_3) =_z^C T_0(q_3)) \to (t:g_1 =_{p_4 =_H q_4} h_1) \\ &\to T_1(g_1) =_t^{T_0(p_4) =_-^H T_0(q_4)} T_1(h_1) \\ &\to T_1(g_2) =_{c_2(x,y,z,t)}^{T_0(p_5) =_-^H T_0(q_5)} T_1(h_2) \end{split}$$

Where  $T_1(g)$  is the *lifting* of g (meant to be  $\operatorname{apd}_f(g)$ ) defined by :

$$\begin{array}{rcl} {\rm T}_1(z) &=& \tilde{z} \\ {\rm T}_1({\rm c}_1(x,y,g)) &=& \tilde{{\rm c}_1}(x,y,{\rm T}_0(y),g,{\rm T}_1(g)) \\ {\rm T}_1({\rm id}) &=& {\rm id} \\ {\rm T}_1(g\circ g') &=& {\rm T}_1(g)\circ' {\rm T}_1(g') \\ {\rm T}_1(g^{-1}) &=& {\rm T}_1(g)^{-1'} \end{array}$$

・ロト ・個ト ・モト ・モト









3 Interpretation in the groupoid model



# Alternate presentation of groupoids

#### Definition

A groupoid is a triple :

$$(A_0, A_1, A_2)$$

where

- A<sub>0</sub> is the underlying set.
- For x, x' ∈ A<sub>0</sub>, we have A<sub>1</sub>(x, x') the set of morphisms between x and x'.
- For  $f, f' \in A_1(f, f')$ , we have  $A_2(f, f')$  inhabited iff f = f'.

together with witnesses of the usual groupoid laws.

<ロト <部ト < 国ト < 国ト = 国

# Groupoid model

# We use the groupoid model. Some correspondences :

| $\vdash C$                  | C is a groupoid              |
|-----------------------------|------------------------------|
| $x : A \vdash C(x)$         | C is a functor from A to the |
|                             | category of groupoids        |
| $\vdash f: A \rightarrow B$ | f is a functor from A to B   |
| $\vdash f:(x:A)\to C(x)$    | f is a dependent             |
|                             | functor between groupoids    |

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

# Sketch of the interpretation

Assume  ${\rm H}$  given, we want to show it can be interpreted in the groupoid model.

- We will build the groupoid  $(H_0, H_1, H_2)$  using inductive definition.
- $\textcircled{2} We do so by building first H_0, then H_1 and finally H_2. We can do this because we deal with finitary hits. \\$
- Then we check that the introduction, elimination and equality rules are validated by this interpretation.

<ロ> (四) (四) (三) (三) (三)

### Η<sub>0</sub>

Inductively generated by the underlying function of  $c_0$   $c_{00} \ \in \ {\cal A}_0 \to H_0 \to H_0$ 

### ${\rm H_1}$

### Inductively generated by

• The underlying function of  $c_1$   $c_{10} \in (x \in B_0) \rightarrow (y \in H_0) \rightarrow H_1(p_0(x, y), q_0(x, y))$  $\rightarrow H_1(p'_0(x, y), q'_0(x, y))$ 

## • The action of $c_0$ on paths $c_{01} \in (x, x' \in A_0) \rightarrow A_1(x, x') \rightarrow (y, y' \in H_0)$ $\rightarrow H_1(y, y') \rightarrow H_1(c_{00}(x, y), c_{00}(x', y'))$

and  $\circ$ , id,  $(-)^{-1}$ .

#### ${\rm H}_2$

#### Inductively generated by

- $\bullet\ c_{20}$  the underlying function of the surface constructor.
- $c_{11}$  the action on paths of the path constructor.
- $\bullet\ c_{02}$  the action on surfaces of the point constructor.
- witnesses of the functor laws for the point constructor.
- witnesses of the groupoid laws.

(日) (同) (日) (日)

### Elimination principle

We need to check that given  $x : H \vdash C(x)$  and suitable constructor  $\tilde{c_0}, \tilde{c_1}, \tilde{c_2}$  we are able to build a function  $f : (x : H) \rightarrow C(x)$ .

- **(**) We build the underlying function  $f_0$  by induction on  $H_0$ .
- **2** We build the action on arrows  $f_1$  by induction on  $H_1$ .
- We show f preserves equalities of paths by building f<sub>2</sub> using induction on H<sub>2</sub>.
- The judgmental equality for f are immediate from its definition.

<ロ> <回> <回> <回> <回> <回> <回> <回> <回> <回> <

# Why finitary hits ?

#### Assume a constructor

$$c_0: (A \rightarrow H) \rightarrow H$$

Then  $\mathrm{H}_0$  should have a constructor like

$$egin{array}{rcl} \mathrm{c}_{00} &\in & (f_0 \in \mathcal{A}_0 
ightarrow \mathrm{H}_0) \ &
ightarrow (f_1 \in (a,b \in \mathcal{A}_0) 
ightarrow \mathcal{A}_1(a,b) 
ightarrow \mathrm{H}_1(f_0(a),f_0(b))) \ &
ightarrow \cdots \ &
ightarrow \mathrm{H}_0 \end{array}$$

So  $H_0$  and  $H_1$  are generated at the same time.

## Further work

- This work should be implemented in some proof assistant :
  - We should prove the schema is well-typed.
  - We should prove the groupoid model is correct.
- It is probably possible to extend this method to *infinitary* hits, perhaps using inductive-inductive definition in the model.
- How can point and path constructor patterns be generalised ?
- Can this method be extended to *n*-hits for arbitrary *n* ?
- $\bullet$  Can this method be extended to  $\infty\mbox{-hits, using e.g.}$  Kan cubical sets ?
- Are finitary higher inductive types consistent relatively to inductive families ?

<ロ> (四) (四) (三) (三) (三)