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Soutenance de thèse / PhD Defense
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Foundations for mathematics

Mathematics is usually founded on set theory.

We use an alternative:

Type theory [Martin-Löf 1972]

Mathematical constructions and reasonings are interpreted as types
and terms in them.

Type Term

N 0

N→ N λ(x : N). x + 2

(x : N)× (y : N)× (x = 2y) (6, 3, refl)

(n : N)→ (p : N)× (p is prime)× (p > n)
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Why do we use type theory?

Definition

A model of type theory is an interpretation for types and terms.

Example: Set-theoretic model

Types are interpreted as sets, and terms as elements of sets.

Type theory has more diverse models than set theory.
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Abundance of models for type theory

Two relevant flavors:

Computational models [Curry-Howard 1969]

Terms are interpreted as computer programs.

Homotopical models [Awodey, Warren 2009]

Types are interpreted as spaces, with equality interpreted as paths.

Easy to build new models from old ones (presheaf, slice, gluing...).
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Abundance of models: a double strength

Assume given a model C.

Direct application

Any proof in type theory can be interpreted in C.

The model C also interprets unprovable principles.

Reverse application

Such principles can be safely added to type theory.
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Example: Univalence

Spaces that can be deformed into one another are not
distinguishable in a homotopical context.

Consequence

In a homotopical model, equivalent types are equal.

This is called the univalence axiom.
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Example: Parametricity

Programs treat their input uniformly.

Consequence [Reynolds 83]

Some computational models enjoy a principle called parametricity.

Definition

A model of type theory is called parametric if:

I Any type comes with a relation.

I Any term respects these relations.
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Cubical structure

A semi-cubical structure on a type X consists of:

I For any x , y : X , a type of path between them.

I For any four paths drawing a square, a type of fillers for this
square.

I And so on.

This structure originates from a homotopical context [Kan 1955].
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Cubical models

Observation

(Variants of) cubical structures arise naturally when trying to build
models for (variants of) parametricity.

I A presheaf model of parametric type theory.
[Bernardy, Coquand, Moulin 2015]

I Cubical categories for higher-dimensional parametricity.
[Johann, Sojakova 2017]

I Internal parametricity for cubical type theory.
[Cavallo,Harper 2020]

Question

How can we explain this phenomenon?

Dealing with many variants of cubes is part of the challenge.
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A first remark

I In a parametric model any type comes with a relation.

I But this relation is itself a type, so it comes with a relation.

I And so on.

Basic insight

This iteration gives a semi-cubical structure.

10



A first remark

I In a parametric model any type comes with a relation.

I But this relation is itself a type, so it comes with a relation.

I And so on.

Basic insight

This iteration gives a semi-cubical structure.

10



Toward a dictionary

By analyzing this basic insight, we see a correspondence:

Variants of parametricity ⇔ Homotopical structures

Parametricity Relation Semi-cubes

Internal parametricity Reflexive relation Cubes

Unary parametricity Predicate Aug. semi-simplices

Biparametricity Two relations Semi-bicubes

...
...

...

11



Toward a dictionary

By analyzing this basic insight, we see a correspondence:

Variants of parametricity ⇔ Homotopical structures

Parametricity Relation Semi-cubes

Internal parametricity Reflexive relation Cubes

Unary parametricity Predicate Aug. semi-simplices

Biparametricity Two relations Semi-bicubes

...
...

...

11



Toward a dictionary

By analyzing this basic insight, we see a correspondence:

Variants of parametricity ⇔ Homotopical structures

Parametricity Relation Semi-cubes

Internal parametricity Reflexive relation Cubes

Unary parametricity Predicate Aug. semi-simplices

Biparametricity Two relations Semi-bicubes

...
...

...

11



Toward a dictionary

By analyzing this basic insight, we see a correspondence:

Variants of parametricity ⇔ Homotopical structures

Parametricity Relation Semi-cubes

Internal parametricity Reflexive relation Cubes

Unary parametricity Predicate Aug. semi-simplices

Biparametricity Two relations Semi-bicubes

...
...

...

11



Toward a dictionary

By analyzing this basic insight, we see a correspondence:

Variants of parametricity ⇔ Homotopical structures

Parametricity Relation Semi-cubes

Internal parametricity Reflexive relation Cubes

Unary parametricity Predicate Aug. semi-simplices

Biparametricity Two relations Semi-bicubes

...
...

...

11



Toward a dictionary

By analyzing this basic insight, we see a correspondence:

Variants of parametricity ⇔ Homotopical structures

Parametricity Relation Semi-cubes

Internal parametricity Reflexive relation Cubes

Unary parametricity Predicate Aug. semi-simplices

Biparametricity Two relations Semi-bicubes

...
...

...
11



Overview

We develop a theory for variants of parametricity, such that:

Auxiliary thesis

Given a model C, there is a ’largest’ parametric model in C.

In category theory, such a model is called cofreely parametric.

Main thesis

Cubical models are cofreely parametric.
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Contributions

We present two frameworks:

1. Parametricity as an extension by section

I An extension by section adds inductively-defined unary
operations to a theory.

I The functor forgetting these operations has a right adjoint.

I Examples of extensions by section:

I Parametricity for clans.
I Parametricity for categories with families.
I Parametricity for categories with families with arrow types and

a universe.
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2. Parametricity as a module structure

I Use a symmetric monoidal closed category of models.

I Define parametric models as modules.

I Describe cofreely parametric models as cofree modules.

I Examples of cofree modules:

I Categories of cubical objects, for any kind of cubes.
I Lex categories of truncated cubical objects.
I Clans of Reedy fibrant cubical objects.

Both frameworks cover many examples unrelated to parametricity.
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Part 1:

Parametricity as an Extension by Section

15



The origins of parametricity

By induction on types and terms:

I System F is parametric [Reynolds 83].

I Various type theories are parametric
[Bernardy, Jansson, Paterson 2010], [Keller, Lasson 2012], · · ·

Parametricity and semi-cubical types [Moeneclaey 2021]

I Axiomatized parametricity as inductively-defined.

I Proved that cofreely parametric models exist.

In this part we give an alternative presentation.
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Plan for Part 1

I Overview on inductive definitions.

I Define extensions by section.

I Define categorical extensions by section.

I Extensions by section give categorical extensions by section.

I Categorical extensions by section have right adjoints.

I Parametricity is an extension by section of categories with
families (with arrow types and a universe).

Conclusion

Cofreely parametric categories with families (with arrow types and
a universe) exist.
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Inductive definitions

We introduce signatures for quotient inductive-inductive types
[Kaposi, Kovács, Altenkirch 2019], [Kovács, Kaposi 2020].

Definition

Signatures are contexts in a type theory with:

I Product, unit and extensional identity types.

I A universe U closed under them.

I Arrow types with domain in U .

Example: Signature for semi-groups

A : U
m : A→ A→ A

: (x , y , z : A)→ m(x ,m(y , z)) = m(m(x , y), z)

18
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We can define inductively on a signature Γ:

I The category AlgΓ of its algebras.

I The type DispΓ(X ) of displayed algebras over X : AlgΓ.

I The type SecΓ(X ,Y ) of sections of Y : DispΓ(X ).

We have:

DispΓ(X ) ' {Morphism with target X}
SecΓ(X ,Y ) ' {Section of this morphism}

Example with Γ = (A : U)

Then X : AlgA:U is simply a type X and we get:

(Y : X → U) ' (X ′ : U)× (p : X ′ → X )

(x : X )→ Y (x) ' (q : X → X ′)× (p ◦ q = idX )

19



We can define inductively on a signature Γ:

I The category AlgΓ of its algebras.

I The type DispΓ(X ) of displayed algebras over X : AlgΓ.

I The type SecΓ(X ,Y ) of sections of Y : DispΓ(X ).

We have:

DispΓ(X ) ' {Morphism with target X}
SecΓ(X ,Y ) ' {Section of this morphism}

Example with Γ = (A : U)

Then X : AlgA:U is simply a type X and we get:

(Y : X → U) ' (X ′ : U)× (p : X ′ → X )

(x : X )→ Y (x) ' (q : X → X ′)× (p ◦ q = idX )

19



We can define inductively on a signature Γ:

I The category AlgΓ of its algebras.

I The type DispΓ(X ) of displayed algebras over X : AlgΓ.

I The type SecΓ(X ,Y ) of sections of Y : DispΓ(X ).

We have:

DispΓ(X ) ' {Morphism with target X}
SecΓ(X ,Y ) ' {Section of this morphism}

Example with Γ = (A : U)

Then X : AlgA:U is simply a type X and we get:

(Y : X → U) ' (X ′ : U)× (p : X ′ → X )

(x : X )→ Y (x) ' (q : X → X ′)× (p ◦ q = idX )

19



Quotient inductive-inductive types (QIITs)

Definition

A QIIT is an algebra X such that any displayed algebra over X
has a section.

Intuition

I Displayed algebras are inductive definitions.

I Sections are inductively-defined operations.

X is a QIIT ⇔ X is an initial object [Sojakova 2015].

Question

Why such a complicated reformulation for initiality?

20
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Example: Natural numbers

The formulation using QIIT is very natural.

Signature X : U x : X y : X → X

QIIT N : Type 0 : N s : N→ N

Displayed
algebra

P : N→ Type 0′ : P(0) s ′ : P(n)→ P(s(n))

Section e : (n : N)→ P(n) e(0) = 0′ e(s(n)) = s ′(e(n))

21
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Extension by section

Let A be a displayed algebra over Γ, internal to signatures.

Intuition

This A is an inductive definition, unary and valid for any algebra.

Parametricity was introduced as such an inductive definition.

Definition

The extension of Γ by a section of A is an extension by section.

This extension adds inductively-defined operations.

22
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Categorical extension by section

Definition

A copointed endofunctor on a category V consists of:

I An endofunctor E : V → V.

I A natural transformation d : E → Id .

So any C : V comes with dC : E (C)→ C.

Definition

A coalgebra for (E , d) is an object C : V with a section of dC .

Definition

A categorical extension by section is a forgetful functor of the form:

CoAlgV(E , d) → V

where V has limits and E commutes with them.

23
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Categorical extension by section from extension by section

Display algebra A over Γ Copointed endofunctor
internal to signature (E , d) of AlgΓ

Algebra for X : AlgΓ

Γ plus a section of A with a section of dX .

Functor forgetting the section CoAlg(E , d)→ AlgΓ
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Constructing cofree objects

Theorem [folklore, e.g. Kelly 80]

Any categorical extension by section has a right adjoint.

This right adjoint sends C : V to the limit of:

C E (C)dCoo E 2(C)
E(dC)ss

dE(C)
kk E 3(C)

E2(dC)
ww

dE2(C)

ff
E(dE(C))oo · · ·

I Gives a right adjoint by the universal property.
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Example: Categories

Definition

A parametric category is a category C equipped with:

I An endofunctor ∗ : C → C.

I Morphisms d0
Γ , d

1
Γ : Γ∗ → Γ natural in Γ.

Proposition

Parametricity is an extension by section of categories.

Proposition

Cofreely parametric categories exist.
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Example: Categories with families

A category with families [Dybjer 1995] with product and unit types
is called parametric if it is equipped with:

∗ : (Γ : Ob)→ Ty(Γ0, Γ1)

∗ : (σ : Hom(Γ,∆))→ Tm((Γ0, Γ1, Γ∗),∆∗[σ0, σ1])

∗ : (A : Ty(Γ))→ Ty(Γ0, Γ1, Γ∗,A0,A1)

∗ : (a : Tm(Γ,A))→ Tm((Γ0, Γ1, Γ∗),A∗[a0, a1])

with equations defining ∗ inductively on any constructor.

Proposition

Cofreely parametric categories with families exist.
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Example: Adding arrow types and a universe

Adding arrow types and a universe works fine with parametricity.

For example we can define:

(A→ B)∗(f0, f1) = (x0, x1 : A)→ A∗(x0, x1)→ B∗(f0(x0), f1(x1))

U∗(A0,A1) = A0 → A1 → U

Proposition

Cofreely parametric categories with families with arrow types and a
universe exist.
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A problem with reflexivities and arrow types

To use internal parametricity, where any type comes with a
reflexive relation, we try to add:

refl : (Γ : Ob)→ Tm((x : Γ), Γ∗[x , x ])

refl : (σ : Hom(Γ,∆))→ σ∗[reflΓ] = refl∆[σ]
...

We do not know how to define:

reflA→B = ?

reflEl(X ) = ?

In Part 2 we consider models without arrow types or a universe.
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Part 2:

Parametricity as a Module Structure

30



An alternative approach

Using extensions by section has drawbacks:

I Each example requires tedious work.

I Hard to prove that cubical models are cofreely parametric,
because cofreely parametric models are complicated limits.

We alleviate these using a symmetric monoidal closed category of
models.
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Plan for Part 2

I Revisit parametric categories for inspiration.

I Axiomatize parametric models as modules in a symmetric
monoidal closed category.

I Give a convenient description for cofree modules.

I Prove that the following are cofree modules:

I Categories of (many variants of) cubical objects.
I Clans of Reedy fibrant cubical objects.

Conclusion

These cubical models are cofreely parametric.

Remark

Use a strict variant of clans to get a symmetric monoidal closed
structure.
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Back to parametric categories

Definition

A parametric category is a category C equipped with:

I An endofunctor ∗ : C → C.

I Two natural transformations d0, d1 : ∗ → Id .

Definition

Let � be the free strict monoidal category generated by:

I An object I.
I Two morphisms d0, d1 : I→ 1.

Functors from � to C are semi-cubical objects in C.

33



Back to parametric categories

Definition

A parametric category is a category C equipped with:

I An endofunctor ∗ : C → C.

I Two natural transformations d0, d1 : ∗ → Id .

Definition

Let � be the free strict monoidal category generated by:

I An object I.
I Two morphisms d0, d1 : I→ 1.

Functors from � to C are semi-cubical objects in C.

33



Back to parametric categories

Definition

A parametric category is a category C equipped with:

I An endofunctor ∗ : C → C.

I Two natural transformations d0, d1 : ∗ → Id .

Definition

Let � be the free strict monoidal category generated by:

I An object I.
I Two morphisms d0, d1 : I→ 1.

Functors from � to C are semi-cubical objects in C.

33



Let M be a strict monoidal category.

Definition

An M-module is a category C with a strict monoidal functor:

α : M→ EndC

Proposition

Parametric categories are equivalent to �-modules.

In a �-module C, any X comes with:

F : �→ C
F (i) = α(i)(X )

giving a semi-cubical object with X as object of points.
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Parametric models as modules

Let V be a symmetric monoidal closed category.

Definition

A notion of parametricity for V is a monoid M in V.

Definition

An M-parametric model is an M-module.

Example

V = {Categories}
M = �

{M–modules} = {Parametric categories}
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Cofreely parametric models

Theorem [folklore, e.g. Pareigis 77]

V

C 7→ CM

88
⊥ {M–modules}

forgetful functor

yy

Sketch of proof

We prove this for sets. But the proof is linear so it works in V.

Example

Categories of semi-cubical objects are cofreely parametric.
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Variants of parametricity for categories

Monoidal category Parametricity Shape

I // 1 Unary Augmented semi-simplices

I //
// 1oo Internal Cubes

I //
// 1 Joo
oo Biparametricity Semi-bicubes

...
...

...
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Clans as models of type theory

In a clan, types are represented by fibrations.

Proposition

The category of strict clans is symmetric monoidal closed.

Lemma

A notion of parametricity for strict clans consists of:

I A strict clan M.

I A strict monoidal product on M commuting with limits in
each variable.

Such that any p : A� Γ and q : B � ∆ induce a fibration:

p � q : A⊗ B � A⊗∆ ×
Γ⊗∆

Γ⊗ B
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Parametric clans and Reedy fibrant cubes

Definition

Let �c be the free monoidal strict clan generated by:

I i
// // 1× 1

Proposition

Clans of Reedy fibrant semi-cubical objects are
cofreely �c -parametric.

Proof sketch

Fibrations in �c are generated by the maps:

i � · · · � i

which send a cube to its border.
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Further work

I Remove strictness assumptions by using a 2-category of
models of type theory.

I Generate Kan cubical structures as cofreely parametric.

Strategy

Axiomatize that Kan fibrations are stable by type constructors.

I Mix reflexivities with arrow types and a universe, inspired by:

Lemma

Let C be a category exponentials and enough limits,
then for any category �, the category C� has exponentials.
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