Cubical Models Are Cofreely Parametric

Hugo Moeneclaey IRIF, Université Paris Cité

Soutenance de thèse / PhD Defense

21 October 2022

Mathematics is usually founded on set theory.

Mathematics is usually founded on set theory. We use an alternative:

Type theory [Martin-Löf 1972]

Mathematics is usually founded on set theory. We use an alternative:

```
Type theory [Martin-Löf 1972]
```

Туре	Term

Mathematics is usually founded on set theory. We use an alternative:

```
Type theory [Martin-Löf 1972]
```

Туре	Term
N	0

Mathematics is usually founded on set theory. We use an alternative:

```
Type theory [Martin-Löf 1972]
```

Туре	Term
Ν	0
$\mathbb{N} \to \mathbb{N}$	$\lambda(x:\mathbb{N}).x+2$

Mathematics is usually founded on set theory. We use an alternative:

```
Type theory [Martin-Löf 1972]
```

Туре	Term
N	0
$\mathbb{N} \to \mathbb{N}$	$\lambda(x:\mathbb{N}).x+2$
$(x:\mathbb{N}) imes(y:\mathbb{N}) imes(x=2y)$	(6, 3, <i>refl</i>)

Mathematics is usually founded on set theory. We use an alternative:

```
Type theory [Martin-Löf 1972]
```

Туре	Term
Ν	0
$\mathbb{N} \to \mathbb{N}$	$\lambda(x:\mathbb{N}).x+2$
$(x:\mathbb{N}) imes(y:\mathbb{N}) imes(x=2y)$	(6, 3, <i>refl</i>)
$(n:\mathbb{N}) ightarrow (p:\mathbb{N}) imes (p \text{ is prime}) imes (p > n)$	_

Definition

A model of type theory is an interpretation for types and terms.

Definition

A model of type theory is an interpretation for types and terms.

Example: Set-theoretic model

Types are interpreted as sets, and terms as elements of sets.

Definition

A model of type theory is an interpretation for types and terms.

Example: Set-theoretic model

Types are interpreted as sets, and terms as elements of sets.

Type theory has more diverse models than set theory.

Abundance of models for type theory

Two relevant flavors:

Two relevant flavors:

Computational models [Curry-Howard 1969]

Terms are interpreted as computer programs.

Two relevant flavors:

Computational models [Curry-Howard 1969]

Terms are interpreted as computer programs.

Homotopical models [Awodey, Warren 2009]

Types are interpreted as spaces, with equality interpreted as paths.

Two relevant flavors:

Computational models [Curry-Howard 1969]

Terms are interpreted as computer programs.

Homotopical models [Awodey, Warren 2009]

Types are interpreted as spaces, with equality interpreted as paths.

Easy to build new models from old ones (presheaf, slice, gluing...).

Assume given a model C.

Direct application

Any proof in type theory can be interpreted in C.

Assume given a model C.

Direct application

Any proof in type theory can be interpreted in C.

The model C also interprets unprovable principles.

Reverse application

Such principles can be safely added to type theory.

Spaces that can be deformed into one another are not distinguishable in a homotopical context.

Spaces that can be deformed into one another are not distinguishable in a homotopical context.

Consequence

In a homotopical model, equivalent types are equal.

Spaces that can be deformed into one another are not distinguishable in a homotopical context.

Consequence

In a homotopical model, equivalent types are equal.

This is called the univalence axiom.

Example: Parametricity

Programs treat their input uniformly.

Programs treat their input uniformly.

Consequence [Reynolds 83]

Some computational models enjoy a principle called parametricity.

Programs treat their input uniformly.

Consequence [Reynolds 83]

Some computational models enjoy a principle called parametricity.

Definition

A model of type theory is called parametric if:

- ► Any type comes with a relation.
- ▶ Any term respects these relations.

A semi-cubical structure on a type X consists of:

- For any x, y : X, a type of path between them.
- ► For any four paths drawing a square, a type of fillers for this square.
- ► And so on.

A semi-cubical structure on a type X consists of:

- For any x, y : X, a type of path between them.
- ► For any four paths drawing a square, a type of fillers for this square.
- ► And so on.

This structure originates from a homotopical context [Kan 1955].

Cubical models

Observation

(Variants of) cubical structures arise naturally when trying to build models for (variants of) parametricity.

Cubical models

Observation

(Variants of) cubical structures arise naturally when trying to build models for (variants of) parametricity.

- A presheaf model of parametric type theory. [Bernardy, Coquand, Moulin 2015]
- Cubical categories for higher-dimensional parametricity. [Johann, Sojakova 2017]
- Internal parametricity for cubical type theory. [Cavallo,Harper 2020]

Cubical models

Observation

(Variants of) cubical structures arise naturally when trying to build models for (variants of) parametricity.

- A presheaf model of parametric type theory. [Bernardy, Coquand, Moulin 2015]
- Cubical categories for higher-dimensional parametricity. [Johann, Sojakova 2017]
- Internal parametricity for cubical type theory. [Cavallo,Harper 2020]

Question

How can we explain this phenomenon?

Dealing with many variants of cubes is part of the challenge.

- ▶ In a parametric model any type comes with a relation.
- ▶ But this relation is itself a type, so it comes with a relation.
- ► And so on.

- ▶ In a parametric model any type comes with a relation.
- ▶ But this relation is itself a type, so it comes with a relation.
- ► And so on.

Basic insight

This iteration gives a semi-cubical structure.

By analyzing this basic insight, we see a correspondence:

By analyzing this basic insight, we see a correspondence:

Parametricity	Relation	Semi-cubes
---------------	----------	------------

By analyzing this basic insight, we see a correspondence:

Parametricity	Relation	Semi-cubes
Internal parametricity	Reflexive relation	Cubes

By analyzing this basic insight, we see a correspondence:

Parametricity	Relation	Semi-cubes
Internal parametricity	Reflexive relation	Cubes
Unary parametricity	Predicate	Aug. semi-simplices

By analyzing this basic insight, we see a correspondence:

Parametricity	Relation	Semi-cubes
Internal parametricity	Reflexive relation	Cubes
Unary parametricity	Predicate	Aug. semi-simplices
Biparametricity	Two relations	Semi-bicubes

By analyzing this basic insight, we see a correspondence:

Parametricity	Relation	Semi-cubes
Internal parametricity	Reflexive relation	Cubes
Unary parametricity	Predicate	Aug. semi-simplices
Biparametricity	Two relations	Semi-bicubes
:	:	:
We develop a theory for variants of parametricity, such that: Auxiliary thesis Given a model C, there is a 'largest' parametric model in C. We develop a theory for variants of parametricity, such that: Auxiliary thesis Given a model C, there is a 'largest' parametric model in C.

In category theory, such a model is called cofreely parametric.

We develop a theory for variants of parametricity, such that:

Auxiliary thesis

Given a model C, there is a 'largest' parametric model in C.

In category theory, such a model is called cofreely parametric.

Main thesis

Cubical models are cofreely parametric.

Contributions

We present two frameworks:

Contributions

We present two frameworks:

- 1. Parametricity as an extension by section
 - An extension by section adds inductively-defined unary operations to a theory.
 - ▶ The functor forgetting these operations has a right adjoint.
 - Examples of extensions by section:
 - Parametricity for clans.
 - Parametricity for categories with families.
 - Parametricity for categories with families with arrow types and a universe.

- 2. Parametricity as a module structure
 - ▶ Use a symmetric monoidal closed category of models.
 - Define parametric models as modules.
 - ▶ Describe cofreely parametric models as cofree modules.
 - Examples of cofree modules:
 - Categories of cubical objects, for any kind of cubes.
 - Lex categories of truncated cubical objects.
 - Clans of Reedy fibrant cubical objects.

- 2. Parametricity as a module structure
 - ▶ Use a symmetric monoidal closed category of models.
 - Define parametric models as modules.
 - ▶ Describe cofreely parametric models as cofree modules.
 - Examples of cofree modules:
 - Categories of cubical objects, for any kind of cubes.
 - Lex categories of truncated cubical objects.
 - Clans of Reedy fibrant cubical objects.

Both frameworks cover many examples unrelated to parametricity.

Part 1:

Parametricity as an Extension by Section

The origins of parametricity

By induction on types and terms:

System F is parametric [Reynolds 83].

The origins of parametricity

By induction on types and terms:

- System F is parametric [Reynolds 83].
- Various type theories are parametric [Bernardy, Jansson, Paterson 2010], [Keller, Lasson 2012], ···

The origins of parametricity

By induction on types and terms:

- System F is parametric [Reynolds 83].
- Various type theories are parametric [Bernardy, Jansson, Paterson 2010], [Keller, Lasson 2012], ···

Parametricity and semi-cubical types [Moeneclaey 2021]

- Axiomatized parametricity as inductively-defined.
- Proved that cofreely parametric models exist.

In this part we give an alternative presentation.

► Overview on inductive definitions.

- ► Overview on inductive definitions.
- ▶ Define extensions by section.

- ► Overview on inductive definitions.
- ▶ Define extensions by section.
- ▶ Define categorical extensions by section.

- Overview on inductive definitions.
- ▶ Define extensions by section.
- ▶ Define categorical extensions by section.
- ► Extensions by section give categorical extensions by section.

- Overview on inductive definitions.
- ▶ Define extensions by section.
- ▶ Define categorical extensions by section.
- ► Extensions by section give categorical extensions by section.
- Categorical extensions by section have right adjoints.

- Overview on inductive definitions.
- ▶ Define extensions by section.
- ▶ Define categorical extensions by section.
- ► Extensions by section give categorical extensions by section.
- Categorical extensions by section have right adjoints.
- Parametricity is an extension by section of categories with families (with arrow types and a universe).

- Overview on inductive definitions.
- ▶ Define extensions by section.
- ▶ Define categorical extensions by section.
- ► Extensions by section give categorical extensions by section.
- Categorical extensions by section have right adjoints.
- Parametricity is an extension by section of categories with families (with arrow types and a universe).

Conclusion

Cofreely parametric categories with families (with arrow types and a universe) exist.

Inductive definitions

We introduce signatures for quotient inductive-inductive types [Kaposi, Kovács, Altenkirch 2019], [Kovács, Kaposi 2020].

Inductive definitions

We introduce signatures for quotient inductive-inductive types [Kaposi, Kovács, Altenkirch 2019], [Kovács, Kaposi 2020].

Definition

Signatures are contexts in a type theory with:

- ▶ Product, unit and extensional identity types.
- \blacktriangleright A universe ${\cal U}$ closed under them.
- Arrow types with domain in \mathcal{U} .

Inductive definitions

We introduce signatures for quotient inductive-inductive types [Kaposi, Kovács, Altenkirch 2019], [Kovács, Kaposi 2020].

Definition

Signatures are contexts in a type theory with:

- Product, unit and extensional identity types.
- \blacktriangleright A universe \mathcal{U} closed under them.
- Arrow types with domain in \mathcal{U} .

Example: Signature for semi-groups

$$A : \mathcal{U}$$

$$m : A \to A \to A$$

$$- : (x, y, z : A) \to m(x, m(y, z)) = m(m(x, y), z)$$

We can define inductively on a signature $\Gamma :$

- ► The category Alg_{Γ} of its algebras.
- ▶ The type $Disp_{\Gamma}(X)$ of displayed algebras over $X : Alg_{\Gamma}$.
- ▶ The type $Sec_{\Gamma}(X, Y)$ of sections of $Y : Disp_{\Gamma}(X)$.

We can define inductively on a signature Γ :

- ► The category Alg_{Γ} of its algebras.
- ▶ The type $Disp_{\Gamma}(X)$ of displayed algebras over $X : Alg_{\Gamma}$.
- ▶ The type $Sec_{\Gamma}(X, Y)$ of sections of $Y : Disp_{\Gamma}(X)$.

We have:

 $Disp_{\Gamma}(X) \simeq \{Morphism with target X\}$ $Sec_{\Gamma}(X, Y) \simeq \{Section of this morphism\}$ We can define inductively on a signature Γ :

- ▶ The category Alg_{Γ} of its algebras.
- ▶ The type $Disp_{\Gamma}(X)$ of displayed algebras over $X : Alg_{\Gamma}$.
- ▶ The type $Sec_{\Gamma}(X, Y)$ of sections of $Y : Disp_{\Gamma}(X)$.

We have:

 $Disp_{\Gamma}(X) \simeq \{Morphism with target X\}$ $Sec_{\Gamma}(X, Y) \simeq \{Section of this morphism\}$

Example with $\Gamma = (A : U)$

Then $X : Alg_{A:U}$ is simply a type X and we get:

$$\begin{array}{rcl} (Y:X \to \mathcal{U}) &\simeq & (X':\mathcal{U}) \times (p:X' \to X) \\ (x:X) \to Y(x) &\simeq & (q:X \to X') \times (p \circ q = id_X) \end{array}$$

Definition

A QIIT is an algebra X such that any displayed algebra over X has a section.

Definition

A QIIT is an algebra X such that any displayed algebra over X has a section.

Intuition

- Displayed algebras are inductive definitions.
- Sections are inductively-defined operations.

Definition

A QIIT is an algebra X such that any displayed algebra over X has a section.

Intuition

- Displayed algebras are inductive definitions.
- Sections are inductively-defined operations.

X is a QIIT \Leftrightarrow X is an initial object [Sojakova 2015].

Definition

A QIIT is an algebra X such that any displayed algebra over X has a section.

Intuition

- Displayed algebras are inductive definitions.
- Sections are inductively-defined operations.

X is a QIIT \Leftrightarrow X is an initial object [Sojakova 2015].

Question

Why such a complicated reformulation for initiality?

Signature	$X:\mathcal{U}$	x : X	$y: X \to X$	
-----------	-----------------	-------	--------------	--

Signature	X : U	x : X	$y:X \to X$
QIIT	ℕ : Type	0: N	$s:\mathbb{N} o\mathbb{N}$

Signature	$X:\mathcal{U}$	<i>x</i> : <i>X</i>	$y: X \to X$
QIIT	ℕ : Type	0 : ℕ	$s:\mathbb{N} o\mathbb{N}$
Displayed algebra	$P:\mathbb{N} o T$ ype	0' : <i>P</i> (0)	$s': P(n) \rightarrow P(s(n))$

Signature	X : U	x : X	$y: X \to X$
QIIT	№ : <i>Туре</i>	0 : ℕ	$s:\mathbb{N} o\mathbb{N}$
Displayed algebra	${\sf P}:\mathbb{N} o {\sf Type}$	0' : <i>P</i> (0)	$s': P(n) \rightarrow P(s(n))$
Section	$e:(n:\mathbb{N})\to P(n)$	e(0) = 0'	e(s(n)) = s'(e(n))

Let A be a displayed algebra over Γ , internal to signatures.

Intuition

This A is an inductive definition, unary and valid for any algebra.

Let A be a displayed algebra over Γ , internal to signatures.

Intuition

This A is an inductive definition, unary and valid for any algebra.

Parametricity was introduced as such an inductive definition.
Let A be a displayed algebra over Γ , internal to signatures.

Intuition

This A is an inductive definition, unary and valid for any algebra.

Parametricity was introduced as such an inductive definition.

Definition

The extension of Γ by a section of A is an extension by section.

This extension adds inductively-defined operations.

Categorical extension by section

Definition

A copointed endofunctor on a category ${\mathcal V}$ consists of:

- ▶ An endofunctor $E : \mathcal{V} \to \mathcal{V}$.
- ▶ A natural transformation $d : E \rightarrow Id$.

So any $\mathcal{C}: \mathcal{V}$ comes with $d_{\mathcal{C}}: E(\mathcal{C}) \to \mathcal{C}$.

Categorical extension by section

Definition

A copointed endofunctor on a category $\mathcal V$ consists of:

- ▶ An endofunctor $E : \mathcal{V} \to \mathcal{V}$.
- ▶ A natural transformation $d : E \rightarrow Id$.

So any $\mathcal{C}: \mathcal{V}$ comes with $d_{\mathcal{C}}: E(\mathcal{C}) \to \mathcal{C}$.

Definition

A coalgebra for (E, d) is an object C : V with a section of d_C .

Categorical extension by section

Definition

A copointed endofunctor on a category ${\mathcal V}$ consists of:

- ▶ An endofunctor $E : \mathcal{V} \to \mathcal{V}$.
- ▶ A natural transformation $d: E \rightarrow Id$.

So any $\mathcal{C}: \mathcal{V}$ comes with $d_{\mathcal{C}}: E(\mathcal{C}) \to \mathcal{C}$.

Definition

A coalgebra for (E, d) is an object C : V with a section of d_C .

Definition

A categorical extension by section is a forgetful functor of the form:

$$CoAlg_{\mathcal{V}}(E,d) \rightarrow \mathcal{V}$$

where \mathcal{V} has limits and E commutes with them.

Categorical extension by section from extension by section

Display algebra A over **G** Copointed endofunctor internal to signature

(E, d) of Alg_{Γ}

Categorical extension by section from extension by section

Display algebra A over **G** Copointed endofunctor internal to signature

(E, d) of Alg_{Γ}

Algebra for

 $X : Alg_{\Gamma}$ Γ plus a section of A with a section of d_X .

Categorical extension by section from extension by section

Display algebra A over F Copointed endofunctor (E, d) of Alg_{Γ} internal to signature

Algebra for

 $X : Alg_{\Gamma}$ Γ plus a section of A with a section of d_X .

Functor forgetting the section $CoAlg(E, d) \rightarrow Alg_{\Gamma}$

Theorem [folklore, e.g. Kelly 80]

Any categorical extension by section has a right adjoint.

Theorem [folklore, e.g. Kelly 80]

Any categorical extension by section has a right adjoint.

This right adjoint sends C : V to the limit of:

Theorem [folklore, e.g. Kelly 80]

Any categorical extension by section has a right adjoint.

This right adjoint sends C : V to the limit of:

Gives a right adjoint by the universal property.

Example: Categories

Definition

A parametric category is a category \mathcal{C} equipped with:

- ▶ An endofunctor $__* : C \to C$.
- ▶ Morphisms $d^0_{\Gamma}, d^1_{\Gamma} : \Gamma_* \to \Gamma$ natural in Γ .

Example: Categories

Definition

A parametric category is a category \mathcal{C} equipped with:

- ▶ An endofunctor $__* : C \to C$.
- ▶ Morphisms $d^0_{\Gamma}, d^1_{\Gamma} : \Gamma_* \to \Gamma$ natural in Γ .

Proposition

Parametricity is an extension by section of categories.

Example: Categories

Definition

A parametric category is a category \mathcal{C} equipped with:

- ▶ An endofunctor $__* : C \to C$.
- ▶ Morphisms $d^0_{\Gamma}, d^1_{\Gamma} : \Gamma_* \to \Gamma$ natural in Γ .

Proposition

Parametricity is an extension by section of categories.

Proposition

Cofreely parametric categories exist.

A category with families [Dybjer 1995] with product and unit types is called parametric if it is equipped with:

$$\begin{array}{rcl} -* & : & (\Gamma:Ob) \to Ty(\Gamma_0,\Gamma_1) \\ -* & : & (\sigma:Hom(\Gamma,\Delta)) \to Tm((\Gamma_0,\Gamma_1,\Gamma_*),\Delta_*[\sigma_0,\sigma_1]) \\ -* & : & (A:Ty(\Gamma)) \to Ty(\Gamma_0,\Gamma_1,\Gamma_*,A_0,A_1) \\ -* & : & (a:Tm(\Gamma,A)) \to Tm((\Gamma_0,\Gamma_1,\Gamma_*),A_*[a_0,a_1]) \end{array}$$

with equations defining $__*$ inductively on any constructor.

A category with families [Dybjer 1995] with product and unit types is called parametric if it is equipped with:

$$\begin{array}{rcl} -* & : & (\Gamma:Ob) \to Ty(\Gamma_0,\Gamma_1) \\ -* & : & (\sigma:Hom(\Gamma,\Delta)) \to Tm((\Gamma_0,\Gamma_1,\Gamma_*),\Delta_*[\sigma_0,\sigma_1]) \\ -* & : & (A:Ty(\Gamma)) \to Ty(\Gamma_0,\Gamma_1,\Gamma_*,A_0,A_1) \\ -* & : & (a:Tm(\Gamma,A)) \to Tm((\Gamma_0,\Gamma_1,\Gamma_*),A_*[a_0,a_1]) \end{array}$$

with equations defining $__*$ inductively on any constructor.

Proposition

Cofreely parametric categories with families exist.

Adding arrow types and a universe works fine with parametricity. For example we can define:

$$egin{array}{rll} (A o B)_*(f_0,f_1) &=& (x_0,x_1:A) o A_*(x_0,x_1) o B_*(f_0(x_0),f_1(x_1)) \ &\mathcal{U}_*(A_0,A_1) &=& A_0 o A_1 o \mathcal{U} \end{array}$$

Adding arrow types and a universe works fine with parametricity. For example we can define:

$$egin{array}{rll} (A o B)_*(f_0,f_1) &=& (x_0,x_1:A) o A_*(x_0,x_1) o B_*(f_0(x_0),f_1(x_1)) \ & \mathcal{U}_*(A_0,A_1) &=& A_0 o A_1 o \mathcal{U} \end{array}$$

Proposition

Cofreely parametric categories with families with arrow types and a universe exist.

A problem with reflexivities and arrow types

To use internal parametricity, where any type comes with a reflexive relation, we try to add:

 $\begin{array}{ll} \textit{refl} & : & (\Gamma : \textit{Ob}) \to \textit{Tm}((x : \Gamma), \Gamma_*[x, x]) \\ \textit{refl} & : & (\sigma : \textit{Hom}(\Gamma, \Delta)) \to \sigma_*[\textit{refl}_{\Gamma}] = \textit{refl}_{\Delta}[\sigma] \\ & \vdots \end{array}$

To use internal parametricity, where any type comes with a reflexive relation, we try to add:

$$\begin{array}{ll} \textit{refl} & : & (\Gamma : \textit{Ob}) \to \textit{Tm}((x : \Gamma), \Gamma_*[x, x]) \\ \textit{refl} & : & (\sigma : \textit{Hom}(\Gamma, \Delta)) \to \sigma_*[\textit{refl}_{\Gamma}] = \textit{refl}_{\Delta}[\sigma] \\ & \vdots \end{array}$$

We do not know how to define:

$$refl_{A \rightarrow B} = ?$$

 $refl_{El(X)} = ?$

To use internal parametricity, where any type comes with a reflexive relation, we try to add:

$$\begin{array}{ll} \textit{refl} & : & (\Gamma : \textit{Ob}) \to \textit{Tm}((x : \Gamma), \Gamma_*[x, x]) \\ \textit{refl} & : & (\sigma : \textit{Hom}(\Gamma, \Delta)) \to \sigma_*[\textit{refl}_{\Gamma}] = \textit{refl}_{\Delta}[\sigma] \\ & \vdots \end{array}$$

We do not know how to define:

$$refl_{A \rightarrow B} = ?$$

 $refl_{El(X)} = ?$

In Part 2 we consider models without arrow types or a universe.

Part 2:

Parametricity as a Module Structure

Using extensions by section has drawbacks:

- ▶ Each example requires tedious work.
- Hard to prove that cubical models are cofreely parametric, because cofreely parametric models are complicated limits.

Using extensions by section has drawbacks:

- ▶ Each example requires tedious work.
- ► Hard to prove that cubical models are cofreely parametric, because cofreely parametric models are complicated limits.

We alleviate these using a symmetric monoidal closed category of models.

▶ Revisit parametric categories for inspiration.

- ▶ Revisit parametric categories for inspiration.
- Axiomatize parametric models as modules in a symmetric monoidal closed category.

- ▶ Revisit parametric categories for inspiration.
- Axiomatize parametric models as modules in a symmetric monoidal closed category.
- ▶ Give a convenient description for cofree modules.

- ▶ Revisit parametric categories for inspiration.
- Axiomatize parametric models as modules in a symmetric monoidal closed category.
- ▶ Give a convenient description for cofree modules.
- Prove that the following are cofree modules:
 - Categories of (many variants of) cubical objects.
 - Clans of Reedy fibrant cubical objects.

- ▶ Revisit parametric categories for inspiration.
- Axiomatize parametric models as modules in a symmetric monoidal closed category.
- ▶ Give a convenient description for cofree modules.
- Prove that the following are cofree modules:
 - Categories of (many variants of) cubical objects.
 - Clans of Reedy fibrant cubical objects.

Conclusion

These cubical models are cofreely parametric.

- ▶ Revisit parametric categories for inspiration.
- Axiomatize parametric models as modules in a symmetric monoidal closed category.
- ▶ Give a convenient description for cofree modules.
- Prove that the following are cofree modules:
 - Categories of (many variants of) cubical objects.
 - Clans of Reedy fibrant cubical objects.

Conclusion

These cubical models are cofreely parametric.

Remark

Use a strict variant of clans to get a symmetric monoidal closed structure.

Back to parametric categories

Definition

A parametric category is a category \mathcal{C} equipped with:

- ▶ An endofunctor $__* : C \to C$.
- ▶ Two natural transformations $d^0, d^1 : __* \rightarrow Id$.

Back to parametric categories

Definition

A parametric category is a category C equipped with:

▶ An endofunctor $__* : C \to C$.

▶ Two natural transformations $d^0, d^1 : __* \to Id$.

Definition

Let \Box be the free strict monoidal category generated by:

- ► An object I.
- ▶ Two morphisms $d^0, d^1 : \mathbb{I} \to 1$.

Back to parametric categories

Definition

A parametric category is a category C equipped with:

- ▶ An endofunctor $__* : C \to C$.
- ▶ Two natural transformations $d^0, d^1 : __* \to Id$.

Definition

Let \Box be the free strict monoidal category generated by:

- ► An object I.
- ▶ Two morphisms $d^0, d^1 : \mathbb{I} \to 1$.

Functors from \Box to C are semi-cubical objects in C.

Let $\ensuremath{\mathcal{M}}$ be a strict monoidal category.

Definition

An $\mathcal M\text{-module}$ is a category $\mathcal C$ with a strict monoidal functor:

 $\alpha \quad : \quad \mathcal{M} \to \mathit{End}_{\mathcal{C}}$

Let $\ensuremath{\mathcal{M}}$ be a strict monoidal category.

Definition

An $\mathcal M\text{-module}$ is a category $\mathcal C$ with a strict monoidal functor:

```
\alpha : \mathcal{M} \to \mathit{End}_{\mathcal{C}}
```

Proposition

Parametric categories are equivalent to □-modules.

Let $\ensuremath{\mathcal{M}}$ be a strict monoidal category.

Definition

An $\mathcal M\text{-module}$ is a category $\mathcal C$ with a strict monoidal functor:

```
\alpha : \mathcal{M} \to \mathit{End}_{\mathcal{C}}
```

Proposition

Parametric categories are equivalent to
-modules.

In a \Box -module C, any X comes with:

$$F : \Box \to \mathcal{C}$$
$$F(i) = \alpha(i)(X)$$

giving a semi-cubical object with X as object of points.
Let ${\mathcal V}$ be a symmetric monoidal closed category.

Let $\ensuremath{\mathcal{V}}$ be a symmetric monoidal closed category.

Definition

A notion of parametricity for ${\mathcal V}$ is a monoid ${\mathcal M}$ in ${\mathcal V}.$

Let $\ensuremath{\mathcal{V}}$ be a symmetric monoidal closed category.

Definition

A notion of parametricity for ${\mathcal V}$ is a monoid ${\mathcal M}$ in ${\mathcal V}.$

Definition

An \mathcal{M} -parametric model is an \mathcal{M} -module.

Let $\ensuremath{\mathcal{V}}$ be a symmetric monoidal closed category.

Definition

A notion of parametricity for ${\mathcal V}$ is a monoid ${\mathcal M}$ in ${\mathcal V}.$

Definition

An \mathcal{M} -parametric model is an \mathcal{M} -module.

Example

Cofreely parametric models

Cofreely parametric models

Sketch of proof

We prove this for sets. But the proof is linear so it works in \mathcal{V} .

Cofreely parametric models

Sketch of proof

We prove this for sets. But the proof is linear so it works in \mathcal{V} .

Example

Categories of semi-cubical objects are cofreely parametric.

Clans as models of type theory

In a clan, types are represented by fibrations.

Proposition

The category of strict clans is symmetric monoidal closed.

Clans as models of type theory

In a clan, types are represented by fibrations.

Proposition

The category of strict clans is symmetric monoidal closed.

Lemma

A notion of parametricity for strict clans consists of:

- ▶ A strict clan \mathcal{M} .
- ▶ A strict monoidal product on *M* commuting with limits in each variable.

Such that any $p : A \twoheadrightarrow \Gamma$ and $q : B \twoheadrightarrow \Delta$ induce a fibration:

$$p \odot q$$
 : $A \otimes B \twoheadrightarrow A \otimes \Delta \underset{\Gamma \otimes \Delta}{\times} \Gamma \otimes B$

Parametric clans and Reedy fibrant cubes

Definition

Let \Box_c be the free monoidal strict clan generated by:

 $\mathbb{I} \xrightarrow{i} 1 \times 1$

Parametric clans and Reedy fibrant cubes

Definition

Let \Box_c be the free monoidal strict clan generated by:

 $\mathbb{I} \xrightarrow{i} 1 \times 1$

Proposition

Clans of Reedy fibrant semi-cubical objects are cofreely \Box_c -parametric.

Parametric clans and Reedy fibrant cubes

Definition

Let \Box_c be the free monoidal strict clan generated by:

 $\mathbb{I} \xrightarrow{i} 1 \times 1$

Proposition

Clans of Reedy fibrant semi-cubical objects are cofreely \Box_c -parametric.

Proof sketch

Fibrations in \Box_c are generated by the maps:

 $i \odot \cdots \odot i$

which send a cube to its border.

Remove strictness assumptions by using a 2-category of models of type theory.

Further work

- Remove strictness assumptions by using a 2-category of models of type theory.
- ▶ Generate Kan cubical structures as cofreely parametric.

Strategy

Axiomatize that Kan fibrations are stable by type constructors.

Further work

- Remove strictness assumptions by using a 2-category of models of type theory.
- ▶ Generate Kan cubical structures as cofreely parametric.

Strategy

Axiomatize that Kan fibrations are stable by type constructors.

▶ Mix reflexivities with arrow types and a universe, inspired by:

Lemma

Let C be a category exponentials and enough limits, then for any category \Box , the category C^{\Box} has exponentials.